Tracer Kinetic Modeling of the 5-HT1AReceptor Ligand [carbonyl-11C]WAY-100635 for PET

[Carbonyl-11C]WAY-100635 is a promising PET radioligand for the 5-HT1A receptor, having demonstrated more favorable characteristics for in vivo imaging than the previously available [O-methyl-11C]WAY-100635. The current study evaluates different tracer kinetic modelling strategies for the quantification of 5-HT1A receptor binding in human brain. Mathematical modelling of the carbonyl-labeled radiotracer is investigated using compartmental structures, including both plasma input and reference tissue approaches. Furthermore, the application of basis function methods allows for the investigation of parametric imaging, providing functional maps of both delivery and binding of the radioligand. Parameter estimates of binding from normal volunteers indicate a low intra- versus a high intersubject variability. It is concluded that a simplified reference tissue approach may be used to quantify 5-HT1A binding either in terms of ROI data or as parametric images.

[1]  P M Bloomfield,et al.  The on-line monitoring of continuously withdrawn arterial blood during PET studies using a single BGO/photomultiplier assembly and non-stick tubing. , 1991, Medical progress through technology.

[2]  A A Lammertsma,et al.  Evaluation of [O-methyl-3H]WAY-100635 as an in vivo radioligand for 5-HT1A receptors in rat brain. , 1994, European journal of pharmacology.

[3]  T. Spinks,et al.  Correction for scatter in 3D brain PET using a dual energy window method. , 1996, Physics in medicine and biology.

[4]  Paul Kinahan,et al.  Analytic 3D image reconstruction using all detected events , 1989 .

[5]  A. Lammertsma,et al.  Simplified Reference Tissue Model for PET Receptor Studies , 1996, NeuroImage.

[6]  R A Robb,et al.  A software system for interactive and quantitative visualization of multidimensional biomedical images. , 1991, Australasian physical & engineering sciences in medicine.

[7]  Vincent J. Cunningham,et al.  Parametric Imaging of Ligand-Receptor Binding in PET Using a Simplified Reference Region Model , 1997, NeuroImage.

[8]  A. Beckett,et al.  AKUFO AND IBARAPA. , 1965, Lancet.

[9]  M. Hamon,et al.  Selective in vivo labelling of brain 5-HT1A receptors by [3H]WAY 100635 in the mouse. , 1994, European journal of pharmacology.

[10]  T J Spinks,et al.  Physical performance of a positron tomograph for brain imaging with retractable septa. , 1992, Physics in medicine and biology.

[11]  M. Minchin,et al.  Characterisation of the Binding of [3H]WAY‐100635, a Novel 5‐Hydroxytryptamine1A Receptor Antagonist, to Rat Brain , 1995, Journal of neurochemistry.

[12]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[13]  I A Cliffe,et al.  A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. , 1995, European journal of pharmacology.

[14]  D J Brooks,et al.  Comparison of Methods for Analysis of Clinical [11C]Raclopride Studies , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  Roger N. Gunn,et al.  Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals , 1998, European Journal of Nuclear Medicine.

[16]  P. Grasby,et al.  Characterisation of the appearance of radioactive metabolites in monkey and human plasma from the 5-HT1A receptor radioligand, [carbonyl-11C]WAY-100635--explanation of high signal contrast in PET and an aid to biomathematical modelling. , 1998, Nuclear medicine and biology.

[17]  P. Grasby,et al.  Characterization of the radioactive metabolites of the 5-HT1A receptor radioligand, [O-methyl-11C]WAY-100635, in monkey and human plasma by HPLC: comparison of the behaviour of an identified radioactive metabolite with parent radioligand in monkey using PET. , 1996, Nuclear medicine and biology.

[18]  H. Wikström,et al.  Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]WAY-100635 , 1997, Brain Research.

[19]  A Malizia,et al.  First delineation of 5-HT1A receptors in human brain with PET and [11C]WAY-100635. , 1995, European journal of pharmacology.

[20]  P A Sargent,et al.  Exquisite delineation of 5-HT1A receptors in human brain with PET and [carbonyl-11 C]WAY-100635. , 1996, European journal of pharmacology.

[21]  Paul J. Harrison,et al.  The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain , 1995, Brain Research.

[22]  Victor W. Pike,et al.  Remotely-controlled production of the 5-HT1A receptor radioligand, [carbonyl-11C]WAY-100635, via 11C-carboxylation of an immobilized Grignard reagent , 1996 .

[23]  Richard S. J. Frackowiak,et al.  Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. , 1990, Brain : a journal of neurology.

[24]  R. Myers Quantification of brain function using PET , 1996 .