Linex discrepancy for bandwidth selection

ABSTRACT A bandwidth selection based on Linex discrepancy is proposed for kernel smoothing of periodogram. The selection minimizes Linex discrepancy between the smoothed and true spectrums. Two estimators are introduced for Linex discrepancy. The bandwidth choice outperforms some common bandwidth choices.

[1]  Peter Bloomfield,et al.  DETERMINING THE BANDWIDTH OF A KERNEL SPECTRUM ESTIMATE , 1987 .

[2]  Thomas C. M. Lee,et al.  A stabilized bandwidth selection method for kernel smoothing of the periodogram , 2001, Signal Process..

[3]  Kurt S. Riedel Adaptive smoothing of the log-spectrum with multiple tapering , 1996, IEEE Trans. Signal Process..

[4]  H. Müller,et al.  Kernels for Nonparametric Curve Estimation , 1985 .

[5]  M. Nassar,et al.  Bayesian Estimation for the Exponentiated Weibull Model , 2005 .

[6]  Clifford M. Hurvich,et al.  Data-Driven Choice of a Spectrum Estimate: Extending the Applicability of Cross-Validation Methods , 1985 .

[7]  Saralees Nadarajah,et al.  Estimation of Water Demand in Iran Based on SARIMA Models , 2013, Environmental Modeling & Assessment.

[8]  Nivaor Rodolfo Rigozo,et al.  Prediction of sunspot number amplitude and solar cycle length for cycles 24 and 25 , 2011 .

[9]  Yudi Pawitan,et al.  Nonparametric Spectral Density Estimation Using Penalized Whittle Likelihood , 1994 .

[10]  Jan Hannig,et al.  Kernel smoothing of periodograms under Kullback-Leibler discrepancy , 2004, Signal Process..

[11]  Arthur Schuster,et al.  On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .

[12]  Thomas C. M. Lee,et al.  Nonparametric log spectrum estimation using disconnected regression splines and genetic algorithms , 2003, Signal Process..

[13]  Jianqing Fan,et al.  Automatic Local Smoothing for Spectral Density Estimation , 1998 .

[14]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[15]  Hong-ye Gao Choice of thresholds for wavelet shrinkage estimate of the spectrum , 1997 .

[16]  J. Marron An Asymptotically Efficient Solution to the Bandwidth Problem of Kernel Density Estimation , 1985 .

[17]  Peter J. Diggle,et al.  Nonparametric Comparison of Cumulative Periodograms , 1991 .

[18]  Thomas C. M. Lee A simple span selector for periodogram smoothing , 1997 .

[19]  Pierre Moulin Wavelet thresholding techniques for power spectrum estimation , 1994, IEEE Trans. Signal Process..

[20]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[21]  Nader Ebrahimi,et al.  Bayesian approach to life testing and reliability estimation using asymmetric loss function , 1991 .

[22]  Donald B. Percival,et al.  Spectrum estimation by wavelet thresholding of multitaper estimators , 1998, IEEE Trans. Signal Process..

[23]  G. Wahba Automatic Smoothing of the Log Periodogram , 1980 .

[24]  ESTIMATION OF THE BINOMIAL PARAMETER N USING A LINEX LOSS FUNCTION , 1992 .

[25]  A. Zellner Bayesian Estimation and Prediction Using Asymmetric Loss Functions , 1986 .

[26]  Young K. Truong,et al.  LOGSPLINE ESTIMATION OF A POSSIBLY MIXED SPECTRAL DISTRIBUTION , 1995 .

[27]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .

[28]  Bayesian estimation of mean and square of mean of normal distribution using linex loss function , 1992 .

[29]  A. Sayyareh,et al.  Parameter estimation and prediction of order statistics for the Burr Type XII distribution with Type II censoring , 2014 .