Linex discrepancy for bandwidth selection
暂无分享,去创建一个
[1] Peter Bloomfield,et al. DETERMINING THE BANDWIDTH OF A KERNEL SPECTRUM ESTIMATE , 1987 .
[2] Thomas C. M. Lee,et al. A stabilized bandwidth selection method for kernel smoothing of the periodogram , 2001, Signal Process..
[3] Kurt S. Riedel. Adaptive smoothing of the log-spectrum with multiple tapering , 1996, IEEE Trans. Signal Process..
[4] H. Müller,et al. Kernels for Nonparametric Curve Estimation , 1985 .
[5] M. Nassar,et al. Bayesian Estimation for the Exponentiated Weibull Model , 2005 .
[6] Clifford M. Hurvich,et al. Data-Driven Choice of a Spectrum Estimate: Extending the Applicability of Cross-Validation Methods , 1985 .
[7] Saralees Nadarajah,et al. Estimation of Water Demand in Iran Based on SARIMA Models , 2013, Environmental Modeling & Assessment.
[8] Nivaor Rodolfo Rigozo,et al. Prediction of sunspot number amplitude and solar cycle length for cycles 24 and 25 , 2011 .
[9] Yudi Pawitan,et al. Nonparametric Spectral Density Estimation Using Penalized Whittle Likelihood , 1994 .
[10] Jan Hannig,et al. Kernel smoothing of periodograms under Kullback-Leibler discrepancy , 2004, Signal Process..
[11] Arthur Schuster,et al. On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .
[12] Thomas C. M. Lee,et al. Nonparametric log spectrum estimation using disconnected regression splines and genetic algorithms , 2003, Signal Process..
[13] Jianqing Fan,et al. Automatic Local Smoothing for Spectral Density Estimation , 1998 .
[14] Matthew P. Wand,et al. Kernel Smoothing , 1995 .
[15] Hong-ye Gao. Choice of thresholds for wavelet shrinkage estimate of the spectrum , 1997 .
[16] J. Marron. An Asymptotically Efficient Solution to the Bandwidth Problem of Kernel Density Estimation , 1985 .
[17] Peter J. Diggle,et al. Nonparametric Comparison of Cumulative Periodograms , 1991 .
[18] Thomas C. M. Lee. A simple span selector for periodogram smoothing , 1997 .
[19] Pierre Moulin. Wavelet thresholding techniques for power spectrum estimation , 1994, IEEE Trans. Signal Process..
[20] AN Kolmogorov-Smirnov,et al. Sulla determinazione empírica di uma legge di distribuzione , 1933 .
[21] Nader Ebrahimi,et al. Bayesian approach to life testing and reliability estimation using asymmetric loss function , 1991 .
[22] Donald B. Percival,et al. Spectrum estimation by wavelet thresholding of multitaper estimators , 1998, IEEE Trans. Signal Process..
[23] G. Wahba. Automatic Smoothing of the Log Periodogram , 1980 .
[24] ESTIMATION OF THE BINOMIAL PARAMETER N USING A LINEX LOSS FUNCTION , 1992 .
[25] A. Zellner. Bayesian Estimation and Prediction Using Asymmetric Loss Functions , 1986 .
[26] Young K. Truong,et al. LOGSPLINE ESTIMATION OF A POSSIBLY MIXED SPECTRAL DISTRIBUTION , 1995 .
[27] N. Smirnov. Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .
[28] Bayesian estimation of mean and square of mean of normal distribution using linex loss function , 1992 .
[29] A. Sayyareh,et al. Parameter estimation and prediction of order statistics for the Burr Type XII distribution with Type II censoring , 2014 .