Laser diagnostics for studies of turbulent combustion

The demands on the quality of velocity, concentration and temperature data from turbulent combustion systems for comparison with numerical predictions are rising with the increasing performance of models for the numerical description of these effects. These demands lead to a high degree of maturity in laser-based methods for concentration, temperature and species information. Laser-based methods are able to give the required information without severely disturbing the observed effects and with the needed accuracy and temporal and spatial resolution. This article reviews the state of the art and recent developments of laser-Doppler velocimetry, Rayleigh spectroscopy, spontaneous Raman spectroscopy, coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence. Emphasis is placed not only on aspects of these measurement techniques connected with spatially and temporally resolved quantitative measurements in turbulent combustion, but also on the interaction of the requirements of these methods on the object with the requirements of the characterized object itself and with demands from methods of numerical prediction on the generated data. New developments and requirements on the reviewed methods originating from new trends in combustion modelling are included.

[1]  One-dimensional raman scattering for determination of multipoint joint scalar probability density functions in turbulent diffusion flames , 1998 .

[2]  R. Hanson,et al.  Quantitative two-photon LIF imaging of carbon monoxide in combustion gases. , 1987, Applied optics.

[3]  H. M. Crosswhite,et al.  THE ULTRAVIOLET BANDS OF OH , 1975 .

[4]  P. Paul A model for temperature-dependent collisional quenching of OHA2∑+ , 1994 .

[5]  Robert V. Edwards,et al.  Report of the Special Panel on Statistical Particle Bias Problems in Laser Anemometry , 1987 .

[6]  I. Kovacs,et al.  Rotational structure of the spectra of diatomic molecules , 1972 .

[7]  H. M. Crosswhite,et al.  The ultraviolet bands of OH Fundamental data , 1962 .

[8]  J. Brault,et al.  Fourier-transform spectra of the A 2 Σ + –X 2 Π Δv = 0 bands of OH and OD , 1994 .

[9]  C. Hirose,et al.  A Study for N2 Coherent Anti-Stokes Raman Spectroscopy Thermometry at High Pressure , 1983 .

[10]  Michael R. Furlanetto,et al.  Collisional electronic quenching of OH A 2Σ (v’=0) measured at high temperature in a shock tube , 1995 .

[11]  J. L. Durant,et al.  Collisional electronic quenching rates for NO A2Σ+ (ν = 0) , 1996 .

[12]  A. Leipertz,et al.  Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air. , 1996, Applied optics.

[13]  J. Daily Laser induced fluorescence spectroscopy in flames , 1997 .

[14]  A. Leipertz,et al.  One-Dimensional, Time-Resolved Raman Measurements in a Sooting Flame made with 355-nm Excitation. , 1998, Applied optics.

[15]  Sune Svanberg,et al.  Two-photon excitation of atomic oxygen in a flame , 1982 .

[16]  W. Meier,et al.  A flat flame burner as calibration source for combustion research: Temperatures and species concentrations of premixed H2/air flames , 1994 .

[17]  William K. George,et al.  Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet , 1994, Journal of Fluid Mechanics.

[18]  J. Janicka,et al.  Turbulent length scales in a swirling flame , 1996 .

[19]  I. Barin Thermochemical data of pure substances , 1989 .

[20]  R. Barlow,et al.  The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements , 1996 .

[21]  T. H. van der Meer,et al.  Effects of Small- and Large-Scale Structures in a Piloted Jet Diffusion Flame , 1999 .

[22]  J. Dec,et al.  Imaging of reaction zones in hydrocarbon-air flames by use of planar laser-induced fluorescence of CH. , 1994, Optics letters.

[23]  A. Leipertz,et al.  Pure rotational coherent anti-stokes Raman scattering: comparison of evaluation techniques for determining single-shot simultaneous temperature and relative n(2)-o(2) concentration. , 1998, Applied optics.

[24]  D. Wilcox Turbulence modeling for CFD , 1993 .

[25]  P. Bradshaw,et al.  Turbulence Models and Their Application in Hydraulics. By W. RODI. International Association for Hydraulic Research, Delft, 1980. Paperback US $15. , 1983, Journal of Fluid Mechanics.

[26]  Jerry M. Seitzman,et al.  Planar laser-fluorescence imaging of combustion gases , 1990 .

[27]  Robert S. Barlow,et al.  Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames , 1994 .

[28]  Winfried Stricker,et al.  Simultaneous Raman/LIF measurements of major species and NO in turbulent H2/air diffusion flames , 1996 .

[29]  R. Barlow,et al.  Simultaneous measurements of NO, OH, and the major species in turbulent flames. , 1994, Optics letters.

[30]  R. Pitz,et al.  Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames. , 1994, Optics letters.

[31]  S. Kruger,et al.  Measurement System for Simultaneous Species Densities,Temperature,and Velocity Double-pulse Measurements in Turbulent Hydrogen Flames , 1998 .

[32]  K. Kohse-Höinghaus,et al.  A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence , 1996 .

[33]  S. Kröll,et al.  An evaluation of precision and systematic errors in vibrational CARS thermometry , 1989 .

[34]  W. C. Gardiner,et al.  Refractivity of combustion gases , 1981 .

[35]  J. Janicka,et al.  The Reynolds-stress tensor in diffusion flames an experimental and theoretical investigation , 1990 .

[36]  J. L. Durant,et al.  A model for temperature-dependent collisional quenching of NO A2 Σ+ , 1993 .

[37]  W. Dahm,et al.  Images of the two-dimensional field and temperature gradients to quantify mixing rates within a non-premixed turbulent jet flame , 1995 .

[38]  Joel H. Ferziger,et al.  Status of Large Eddy Simulation: Results of a Workshop , 1997 .

[39]  P. Andresen,et al.  Operation of KrF and ArF tunable excimer lasers without Cassegrain optics , 1996 .

[40]  P. Andresen,et al.  Spatially resolved multispecies and temperature analysis in hydrogen flames. , 1993, Applied optics.

[41]  Tzong H. Chen,et al.  Second‐generation combined CARS‐LDV instrument for simultaneous temperature and velocity measurements in combusting flows , 1989 .

[42]  N. Laurendeau,et al.  Comparisons of laser-saturated, laser-induced, and planar laser-induced fluorescence measurements of nitric oxide in a lean direct-injection spray flame. , 1998, Applied optics.

[43]  J. Boquillon,et al.  Spatial averaging and multiplex coherent anti-Stokes Raman scattering temperature-measurement error. , 1988, Optics letters.

[44]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[45]  M. Long,et al.  Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method , 1994 .

[46]  P. Andresen,et al.  Application of tunable excimer lasers to combustion diagnostics: a review. , 1997, Applied optics.

[47]  R. Pitz,et al.  Raman scattering measurements in flames using a tunable KrF excimer laser. , 1992, Applied optics.

[48]  James L. Tangler Influence of Pitch, Twist, and Taper on a Blade’s Performance Loss due to Roughness , 1997 .

[49]  W. Meier,et al.  The application of single-pulse CARS for temperature measurements in a turbulent stagnation flame , 1991 .

[50]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[51]  E. Diessel,et al.  Parameter studies in practical nitrogen CARS thermometry using standard and advanced fitting codes , 1990 .

[52]  Campbell D. Carter,et al.  Scalar and velocity field measurements in a lifted CH4–air diffusion flame , 1999 .

[53]  W. Meier,et al.  Characterization of Turbulent hytVAir Jet Diffusion Flames by Single-Pulse Spontaneous Raman Scattering , 1996 .

[54]  R. Hanson,et al.  Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics. , 1998, Applied optics.

[55]  Robert W. Bilger,et al.  Molecular Transport Effects in Turbulent Diffusion Flames at Moderate Reynolds Number , 1981 .

[56]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[57]  A. Eckbreth Laser Diagnostics for Combustion Temperature and Species , 1988 .

[58]  W. Meier,et al.  Application of a backside-illuminated charge-coupled-device camera for single-pulse coherent anti-Stokes Raman spectroscopy N(2) thermometry. , 1992, Optics letters.

[59]  N. Laurendeau,et al.  Laser-saturated fluorescence measurements of nitric oxide in an inverse diffusion flame , 1999 .

[60]  D. Brüggemann,et al.  Fuel vapor measurements by linear Raman spectroscopy using spectral discrimination from droplet interferences. , 1999, Applied optics.

[61]  P. Miles Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines. , 1999, Applied optics.

[62]  D. Crosley,et al.  Calculated rotational transition probabilities for the A−X system of OH , 1980 .

[63]  T. S. Norton,et al.  Comparison of Experimental and Computed Species Concentration and Temperature Profiles in Laminar, Two-Dimensional Methane/Air Diffusion Flames , 1993 .

[64]  Winfried Stricker,et al.  Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame , 1998 .

[65]  Paul E. Dimotakis,et al.  Image correlation velocimetry , 1995 .

[66]  G. Smallwood,et al.  An improved CARS spectrometer for single‐shot measurements in turbulent combustion , 1992 .

[67]  R. Barlow,et al.  Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame , 1996 .

[68]  N. Laurendeau,et al.  Quantitative hydroxyl concentration time-series measurements in turbulent nonpremixed flames. , 1999, Applied optics.

[69]  E. Hassel Ultraviolet Raman-scattering measurements in flames by the use of a narrow-band XeCl excimer laser. , 1993, Applied optics.

[70]  C. Carter,et al.  Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+-X2π system , 1992 .

[71]  D. Snelling,et al.  Single pulse CARS noise: a comparison between single-mode and multimode pump lasers. , 1985, Applied Optics.

[72]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[73]  M. Aldén,et al.  Optical characterization of dimethyl ether (DME) for laser-based combustion diagnostics , 1998 .

[74]  M. Mansour,et al.  Spatial-averaging effects in Raman / Rayleigh measurements in a turbulent flame , 1990 .

[75]  M. Aldén,et al.  Two-Dimensional Imaging of Flame Species Using Two-Photon Laser-Induced Fluorescence , 1997 .

[76]  H. H. Bruun,et al.  Hot-Wire Anemometry: Principles and Signal Analysis , 1996 .

[77]  P. Andresen,et al.  Planar air density measurements near model surfaces by ultraviolet Rayleigh/Raman scattering , 1994 .

[78]  D. Crosley,et al.  Temperature dependent quenching of the A 2Σ+ and B 2Π states of NO , 1990 .

[79]  A. Leipertz,et al.  Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements. , 1997, Applied optics.

[80]  H. Hiroyasu,et al.  The applications of laser Rayleigh scattering to combustion diagnostics , 1993 .

[81]  Johannes Janicka,et al.  Turbulence modulation in jet diffusion flames: Modeling and experiments , 1996 .

[82]  N. Peters,et al.  Reduced Kinetic Mechanisms for Applications in Combustion Systems , 1993 .

[83]  D. Greenhalgh Quantitative CARS spectroscopy , 1988 .

[84]  J. Janicka,et al.  Comparison of Reynolds Stress Closures for Strongly Swirling Combusting Jets , 1997 .

[85]  A. Masri,et al.  Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames. , 1997, Applied optics.

[86]  G. Loge,et al.  Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ , 1983 .

[87]  Robert W. Dibble,et al.  Conditional sampling of velocity and scalars in turbulent flames using simultaneous LDV-Raman scattering , 1987 .

[88]  CARS thermometry in high temperature gradients , 1993 .

[89]  R. Schefer,et al.  Conserved scalar fluxes measured in a turbulent nonpremixed flame by combined laser Doppler velocimetry and laser Raman scattering , 1984 .

[90]  Finite rate chemistry and NO molefraction in non-premixed turbulent flames , 1998 .

[91]  P. Andresen,et al.  Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame , 1995 .

[92]  Volker Beushausen,et al.  Interference-free UV-laser-induced Raman and Rayleigh measurements in hydrocarbon combustion using polarization properties , 1995 .

[93]  Joseph A. Wehrmeyer,et al.  Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame , 1992 .

[94]  Paul H. Krupenie The band spectrum of carbon monoxide , 1966 .

[95]  J. L. Durant,et al.  Collisional electronic quenching of NO A 2Σ+ by N2 from 300 to 4500 K , 1992 .

[96]  R. J. Hall,et al.  Quantitative CARS spectroscopy of CO2 and N2O. , 1984, Applied optics.

[97]  P. E. Rouse,et al.  BETA AND GAMMA BAND SYSTEMS OF NITRIC OXIDE. , 1969 .

[98]  G. Black,et al.  Wavelength dependence of Raman scattering cross sections from 200-600 nm , 2008 .

[99]  M. Versluis,et al.  2-D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration , 1997 .

[100]  C. Carter,et al.  Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames , 1998 .

[101]  Johannes Janicka,et al.  Nonlinear Second Moment Closure Consistent with Shear and Strain Flows , 1997 .

[102]  Jean-Paul Champion,et al.  T.D.S. spectroscopic databank for spherical tops: DOS version , 1994 .

[103]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[104]  Cameron Tropea,et al.  Laser Doppler anemometry: recent developments and future challenges , 1995 .

[105]  D. Crosley,et al.  Radiative, collisional, and predissociative effects in CH laser-induced-fluorescence flame thermometry. , 1999, Applied optics.

[106]  Bassam B. Dally,et al.  Instantaneous and Mean Compositional Structure of Bluff-Body Stabilized Nonpremixed Flames , 1998 .

[107]  N. Chigier Velocity measurements in inhomogeneous combustion systems , 1989 .

[108]  I. Shepherd,et al.  Spatial resolution effects of CARS in turbulent premixed combustion thermometry , 1990 .

[109]  A. Dreizler,et al.  The application of a raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics , 1992 .

[110]  R. J. Hall,et al.  Noise properties of single-pulse coherent anti-Stokes Raman spectroscopy with multimode pump sources , 1986 .

[111]  A. Leipertz,et al.  Simultaneous coherent anti-Stokes Raman scattering and two-dimensional laser Rayleigh thermometry in a contained technical swirl combustor. , 1995, Applied optics.

[112]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[113]  P. Desgroux,et al.  Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames , 1997 .