Demand Point Aggregation for Some Basic Location Models

Location problems occurring in urban or regional settings may involve many tens of thousands of “demand points,” usually individual residences. In modeling such problems it is common to aggregate demand points to obtain tractable models. We discuss aggregation approaches to a large class of location models, consider various aggregation error measures, and identify some effective measures. In particular, we focus on an upper bounding methodology for the error associated with aggregation. The chapter includes an example application.

[1]  Jorge Pinho de Sousa,et al.  Metaheuristics: Computer Decision-Making , 2010 .

[2]  John N. Hooker,et al.  Finite Dominating Sets for Network Location Problems , 1991, Oper. Res..

[3]  Yosef Sheffi,et al.  Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods , 1985 .

[4]  Arthur M. Geoffrion,et al.  Objective function approximations in mathematical programming , 1977, Math. Program..

[5]  M. Daskin,et al.  Aggregation effects in maximum covering models , 1990 .

[6]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[7]  Paul D. Domich,et al.  Locating tax facilities: a graphics based microcomputer optimization model , 1991 .

[8]  Nimrod Megiddo,et al.  On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..

[9]  Timothy J. Lowe,et al.  A Synthesis of Aggregation Methods for Multifacility Location Problems: Strategies for Containing Error , 1999 .

[10]  Kasturi R. Varadarajan A divide-and-conquer algorithm for min-cost perfect matching in the plane , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[11]  Alon Itai,et al.  Geometry Helps in Bottleneck Matching and Related Problems , 2001, Algorithmica.

[12]  Alan T. Murray,et al.  The Influence of Data Aggregation on the Stability of p-Median Location Model Solutions , 2010 .

[13]  A. Tamir,et al.  Exploiting self‐canceling demand point aggregation error for some planar rectilinear median location problems , 2003 .

[14]  Erhan Erkut,et al.  Analytical models for locating undesirable facilities , 1989 .

[15]  Micha Sharir,et al.  Vertical Decomposition of Shallow Levels in 3-Dimensional Arrangements and Its Applications , 1999, SIAM J. Comput..

[16]  E. Hillsman,et al.  Errors in measuring distances from populations to service centers , 1978 .

[17]  Justo Puerto,et al.  Location Theory - A Unified Approach , 2005 .

[18]  A. Tamir,et al.  Aggregation Decomposition and Aggregation Guidelines for a Class of Minimax and Covering Location Models , 2004 .

[19]  Frank Plastria,et al.  On the choice of aggregation points for continuousp-median problems: A case for the gravity centre , 2001 .

[20]  A. Frieze,et al.  A simple heuristic for the p-centre problem , 1985 .

[21]  Mariel S. Lavieri,et al.  A Florida County Locates Disaster Recovery Centers , 2005, Interfaces.

[22]  Timothy J. Lowe,et al.  A framework for demand point and solution space aggregation analysis for location models , 2004, Eur. J. Oper. Res..

[23]  Gerhard J. Woeginger,et al.  Uncapacitated single and multiple allocation p-hub center problems , 2009, Comput. Oper. Res..

[24]  Timothy J. Lowe,et al.  Aggregation Error Bounds for a Class of Location Models , 2000, Oper. Res..

[25]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[26]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[27]  Erhan Erkut,et al.  Analysis of aggregation errors for the p-median problem , 1999, Comput. Oper. Res..

[28]  Stefan Nickel,et al.  Location Software and Interface with GIS and Supply Chain Management , 2001 .

[29]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[30]  R. L. Francis,et al.  Demand point aggregation analysis for a class of constrained location models: a penalty function approach , 2004 .

[31]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[32]  Pitu B. Mirchandani,et al.  Location on networks : theory and algorithms , 1979 .

[33]  Timothy J. Lowe,et al.  On worst-case aggregation analysis for network location problems , 1993, Ann. Oper. Res..

[34]  Bhaba R. Sarker,et al.  Discrete location theory , 1991 .

[35]  Timothy J. Lowe,et al.  Aggregation error for location models: survey and analysis , 2009, Ann. Oper. Res..

[36]  Mark S. Daskin,et al.  Network and Discrete Location: Models, Algorithms, and Applications, Second Edition , 2013 .