Finite element limit analysis of anisotropic structures

Abstract The limit analysis problem, permitting the direct computation of the collapse load of perfectly plastic structures, is considered for anisotropic materials. To this end, the essential piece of information, so far available in a limited number of cases only, is the expression of the dissipation power associated to the anisotropic yield criterion as an explicit function of strain rates. Such expression is derived for conditions based on the Tsai–Wu’s tensor polynomial form for failure criteria, truncated to second order stress terms, but accounting for possible tensile to compressive strength differential. On this basis, numerical procedures successfully employed in the isotropic case can be extended with minor modifications to the anisotropic context, as some examples illustrate.

[1]  Yuzhe Liu,et al.  A numerical method for plastic limit analysis of 3-D structures , 1995 .

[2]  Edmund Christiansen,et al.  Automatic mesh refinement in limit analysis , 1999 .

[3]  Paolo Fuschi,et al.  Limit analysis for a general class of yield conditions , 2000 .

[4]  J. Pastor,et al.  Finite element method and limit analysis theory for soil mechanics problems , 1980 .

[5]  Antonio Capsoni,et al.  A FINITE ELEMENT FORMULATION OF THE RIGID–PLASTIC LIMIT ANALYSIS PROBLEM , 1997 .

[6]  Lelio Luzzi,et al.  Collapse of Thick Cylinders Under Radial Pressure and Axial Load , 2005 .

[7]  J. Argyris,et al.  TRIC: a simple but sophisticated 3-node triangular element based on 6 rigid-body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells , 1997 .

[8]  J. Z. Zhu,et al.  The finite element method , 1977 .

[9]  S. Sloan,et al.  Upper bound limit analysis using discontinuous velocity fields , 1995 .

[10]  Antonio Capsoni Limit analysis of anisotropic structures based on the kinematic theorem , 2001 .

[11]  Ted Belytschko,et al.  Numerical Methods for the Limit Analysis of Plates , 1968 .

[12]  H. Saunders,et al.  Theory And Design Of Pressure Vessels , 1985 .

[13]  Raffaele Casciaro,et al.  A mixed formulation and mixed finite elements for limit analysis , 1982 .

[14]  Antonio Capsoni,et al.  Limit analysis of orthotropic structures based on Hill’s yield condition , 2001 .

[15]  D. W. Scharpf,et al.  Finite element method — the natural approach , 1979 .

[16]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  Leone Corradi,et al.  Post-collapse analysis of plates and shells based on a rigid-plastic version of the TRIC element , 2003 .

[18]  Manolis Papadrakakis,et al.  Elasto-plastic analysis of shells with the triangular element TRIC , 2002 .

[19]  Gao Yang Panpenalty finite element programming for plastic limit analysis , 1988 .

[20]  Knud D. Andersen,et al.  Computation of collapse states with von Mises type yield condition , 1998 .

[21]  Hoon Huh,et al.  A general algorithm for limit solutions of plane stress problems , 1986 .

[22]  Antonio Capsoni,et al.  Limit analysis of plates-a finite element formulation , 1999 .

[23]  Stephen W. Tsai,et al.  A General Theory of Strength for Anisotropic Materials , 1971 .

[24]  J. Argyris,et al.  The TRIC shell element: theoretical and numerical investigation , 2000 .

[25]  Alan R.S. Ponter,et al.  Limit state solutions, based upon linear elastic solutions with a spatially varying elastic modulus , 1997 .

[26]  John Brand Martin,et al.  Plasticity: Fundamentals and General Results , 1975 .

[27]  Ted Belytschko,et al.  Plane Stress Limit Analysis by Finite Elements , 1970 .

[28]  M. Z. Cohn,et al.  Engineering Plasticity by Mathematical Programming , 1981 .

[29]  G. Jiang Non‐linear finite element formulation of kinematic limit analysis , 1995 .

[30]  Pasquale Vena,et al.  Limit analysis of orthotropic plates ? ? Partial results were presented at the Plasticity '00 Sympos , 2003 .

[31]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[32]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[33]  C. L. Morgan,et al.  Continua and Discontinua , 1916 .