Local and Parallel Finite Element Algorithms for the Transmission Eigenvalue Problem

Based on the work of Xu and Zhou (Math Comp 69:881–909, 2000), we establish local and parallel algorithms for the Helmholtz transmission eigenvalue problem. For the $$H^2$$H2-conforming finite element and the spectral element approximations, we prove the local error estimates and the efficiency of local and parallel algorithms. Numerical experiments indicate that our algorithms are easy to implement on the existing packages, and can be used to solve the transmission eigenvalue problem with local low smooth eigenfunctions efficiently.

[1]  Xia Ji,et al.  Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues , 2012, TOMS.

[2]  Hai Bi,et al.  Non-conforming finite element methods for transmission eigenvalue problem ☆ , 2016, 1601.01068.

[3]  Aihui Zhou,et al.  Three-Scale Finite Element Discretizations for Quantum Eigenvalue Problems , 2007, SIAM J. Numer. Anal..

[4]  Xia Ji,et al.  C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document}IP Methods for the Transmission Eigenvalue Proble , 2015, Journal of Scientific Computing.

[5]  Bryan P. Rynne,et al.  The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .

[6]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[7]  D. Colton,et al.  Transmission eigenvalues and the nondestructive testing of dielectrics , 2008 .

[8]  Jiguang Sun Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..

[9]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[10]  Liwei Xu,et al.  Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems , 2013 .

[11]  Ming Wang,et al.  On the Necessity and Sufficiency of the Patch Test for Convergence of Nonconforming Finite Elements , 2001, SIAM J. Numer. Anal..

[12]  Jie Shen,et al.  A Spectral-Element Method for Transmission Eigenvalue Problems , 2013, J. Sci. Comput..

[13]  Jiayu Han,et al.  An Adaptive Finite Element Method for the Transmission Eigenvalue Problem , 2016, Journal of Scientific Computing.

[14]  Xu-Hong Yu,et al.  Spectral Element Method for Mixed Inhomogeneous Boundary Value Problems of Fourth Order , 2014, Journal of Scientific Computing.

[15]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[16]  Ping Wang,et al.  On the Monotonicity of (k;g,h)-graphs , 2002 .

[17]  End Semester Me Finite element methods , 2018, Graduate Studies in Mathematics.

[18]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[19]  H. Haddar,et al.  On the existence of transmission eigenvalues in an inhomogeneous medium , 2009 .

[20]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[21]  Tong Zhang,et al.  Two-Sided Arnoldi and Nonsymmetric Lanczos Algorithms , 2002, SIAM J. Matrix Anal. Appl..

[22]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[23]  Xia Ji,et al.  A Multigrid Method for Helmholtz Transmission Eigenvalue Problems , 2014, J. Sci. Comput..

[24]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[25]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[26]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[27]  Andreas Kleefeld,et al.  A numerical method to compute interior transmission eigenvalues , 2013 .

[28]  Jiayu Han,et al.  The multilevel mixed finite element discretizations based on local defect-correction for the Stokes eigenvalue problem , 2015 .

[29]  Hai Bi,et al.  Mixed Methods for the Helmholtz Transmission Eigenvalues , 2016, SIAM J. Sci. Comput..

[30]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[31]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms for Eigenvalue Problems , 2002 .

[32]  Hai Bi,et al.  Error estimates and a two grid scheme for approximating transmission eigenvalues , 2015, 1506.06486.

[33]  Hao Li,et al.  Local and Parallel Finite Element Discretizations for Eigenvalue Problems , 2013, SIAM J. Sci. Comput..

[34]  Jinchao Xu,et al.  Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.

[35]  Jiayu Han,et al.  An Hm-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues , 2015, 1512.06659.

[36]  Jiguang Sun,et al.  Finite Element Methods for Maxwell's Transmission Eigenvalues , 2012, SIAM J. Sci. Comput..

[37]  Jiguang Sun,et al.  Error Analysis for the Finite Element Approximation of Transmission Eigenvalues , 2014, Comput. Methods Appl. Math..