Computing Exact Bounds on Elements of an Inverse Interval Matrix is NP-Hard
暂无分享,去创建一个
[1] Christopher L. DeMarco,et al. The computational complexity of approximating the minimal perturbation scaling to achieve instability in an interval matrix , 1994, Math. Control. Signals Syst..
[2] M. Morari,et al. Computational complexity of μ calculation , 1994, IEEE Trans. Autom. Control..
[3] James Demmel,et al. The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..
[4] Svatopluk Poljak,et al. Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..
[5] A. Nemirovskii. Several NP-hard problems arising in robust stability analysis , 1993 .
[6] Jiri Rohn,et al. Inverse interval matrix , 1993 .
[7] Gregory E. Coxson,et al. The P-matrix problem is co-NP-complete , 1994, Math. Program..
[8] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[9] V. Kreinovich. Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .
[10] A. Neumaier. Interval methods for systems of equations , 1990 .