A low-complexity data-adaptive approach for premature ventricular contraction recognition

[1]  Konstantina S. Nikita,et al.  Editorial: Special Issue on Mobile and Wireless Technologies for Healthcare Delivery , 2012, IEEE Transactions on Biomedical Engineering.

[2]  Jindong Tan,et al.  A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks , 2012, Sensors.

[3]  Gari D. Clifford,et al.  Signal quality in cardiorespiratory monitoring , 2012 .

[4]  Chengyu Liu,et al.  Higher order spectra for heart rate variability and QT interval variability analysis: A comparison between heart failure and normal control groups , 2011, 2011 Computing in Cardiology.

[5]  Juan Pablo Martínez,et al.  Heartbeat Classification Using Feature Selection Driven by Database Generalization Criteria , 2011, IEEE Transactions on Biomedical Engineering.

[6]  Chengyu Liu,et al.  Comparison of different threshold values r for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups , 2011, Physiological measurement.

[7]  Joon S. Lim,et al.  Finding Features for Real-Time Premature Ventricular Contraction Detection Using a Fuzzy Neural Network System , 2009, IEEE Transactions on Neural Networks.

[8]  Ivo Iliev,et al.  Online Digital Filter and QRS Detector Applicable in Low Resource ECG Monitoring Systems , 2008, Annals of Biomedical Engineering.

[9]  Gregory T. A. Kovacs,et al.  Robust Neural-Network-Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval Features , 2006, IEEE Transactions on Biomedical Engineering.

[10]  Philip de Chazal,et al.  A Patient-Adapting Heartbeat Classifier Using ECG Morphology and Heartbeat Interval Features , 2006, IEEE Transactions on Biomedical Engineering.

[11]  A. Iwasa,et al.  Abnormal Heart Rate Turbulence Predicts the Initiation of Ventricular Arrhythmias , 2005, Pacing and clinical electrophysiology : PACE.

[12]  R. E. Madrid,et al.  Amplifier spurious input current components in electrode-electrolyte interface impedance measurements , 2005, Biomedical engineering online.

[13]  Philip de Chazal,et al.  Automatic classification of heartbeats using ECG morphology and heartbeat interval features , 2004, IEEE Transactions on Biomedical Engineering.

[14]  Liang-Yu Shyu,et al.  Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG , 2004, IEEE Transactions on Biomedical Engineering.

[15]  G.B. Moody,et al.  The impact of the MIT-BIH Arrhythmia Database , 2001, IEEE Engineering in Medicine and Biology Magazine.

[16]  Carsten Peterson,et al.  Clustering ECG complexes using Hermite functions and self-organizing maps , 2000, IEEE Trans. Biomed. Eng..

[17]  Xu-Sheng Zhang,et al.  Detecting ventricular tachycardia and fibrillation by complexity measure , 1999, IEEE Transactions on Biomedical Engineering.

[18]  W.J. Tompkins,et al.  A patient-adaptable ECG beat classifier using a mixture of experts approach , 1997, IEEE Transactions on Biomedical Engineering.

[19]  K. Toosi,et al.  Discrete Wavelet-based Fuzzy Network Architecture for ECG Rhythm-Type Recognition: Feature Extraction and Clustering- Oriented Tuning of Fuzzy Inference System , 2011 .

[20]  Li Jian,et al.  A Real-Time QRS Complex Detection Method , 2011 .

[21]  Y. Kim,et al.  A PDA-Based ECG Beat Detector for Home Cardiac Care , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[22]  Haiying Zhou,et al.  A Real-Time Continuous Cardiac Arrhythmias Detection System: RECAD , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[23]  Ronald D Berger,et al.  QT variability. , 2003, Journal of electrocardiology.

[24]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .