Prediction of the flow around the X-31 aircraft using three different CFD methods

Recent results from numerical investigations regarding the complex steady state and unsteady flow physics of the X-31 configuration within the low speed flow regime are presented. These investigations are established as a contribution to the RTO/AVT-161 Task Group focusing on “Assessment of Stability and Control Prediction Methods for NATO Air and Sea Vehicles”. The status of the ability to predict the steady state and unsteady flow comparing three different CFD methods will be presented. The validation process is based on essential experimental steady and unsteady tests. These tests are done with the focus of integrating CFD and Experiment by detailed determination of wind tunnel test boundary conditions, influences on specific components of the wind tunnel model and support as well as on data acquisition process. The aim is to evaluate the status of the ability for giving a contribution to S&C analyses for configurations with non-linear aerodynamic behavior.

[1]  S. P. Spekreijse,et al.  ENFLOW a full-functionality system of CFD codes for industrial Euler/Navier-Stokes flow computations , 1996 .

[2]  Andreas-René Hübner,et al.  Integrated Experimental and Numerical Research on the Aerodynamics of Unsteady Moving Aircraft , 2007 .

[3]  Russell M. Cummings,et al.  Aerodynamic Analysis of a Generic Fighter Using Delayed Detached-Eddy Simulation , 2009 .

[4]  Lakshmi N. Sankar,et al.  An implicit algorithm for solving time dependent flows on unstructured grids , 1997 .

[5]  Stefan Görtz,et al.  Standard Unstructured Grid Solutions for Cranked Arrow Wing Aerodynamics Project International F-16XL , 2009 .

[6]  Ralf Heinrich,et al.  The DLR TAU-Code: Recent Applications in Research and Industry , 2006 .

[7]  T. Gerhold,et al.  Calculation of Complex Three-Dimensional Configurations Employing the DLR-tau-Code , 1997 .

[8]  Ralf Heinrich,et al.  COMPARISON AND EVALUATION OF CELL-CENTERED AND CELL-VERTEX DISCRETIZATION IN THE UNSTRUCTURED TAU-CODE FOR TURBULENT VISCOUS FLOWS , 2010 .

[9]  Henry Dol,et al.  Leading edge vortex flow computations and comparison with DNW-HST wind tunnel data , 2001 .

[10]  Stefan Görtz,et al.  F-16XL Geometry and Computational Grids Used in Cranked-Arrow Wing Aerodynamics Project International , 2009 .

[11]  Stephan M. Hitzel,et al.  Numerical and Experimental Analyses of the Vortical Flow Around the SACCON Configuration , 2010 .

[12]  Stefan Görtz,et al.  Towards an Efficient Aircraft Stability and Control Analysis Capability Using High-Fidelity CFD , 2007 .

[13]  Stefan Görtz,et al.  Description of the F-16XL Geometry and Computational Grids Used in CAWAPI , 2007 .

[14]  Russell M. Cummings,et al.  F- 16XL Unsteady Simulations for the CAWAPI Facet of RTO Task Group AVT- 113 , 2007 .

[15]  Bambang I. Soemarwoto,et al.  X-LES Simulations Using a High-Order Finite-Volume Scheme , 2008 .

[16]  You-Chi Cheng,et al.  Decomposition of one-dimensional waveform using iterative Gaussian diffusive filtering methods , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Thomas Gerhold,et al.  Overview of the Hybrid RANS Code TAU , 2005 .

[18]  Arthur Rizzi,et al.  Creation of Aerodynamic Database for the X-31 , 2010 .

[19]  Andreas Bergmann,et al.  Ground-Based Simulation of Complex Maneuvers of a Delta-Wing Aircraft , 2008 .

[20]  O. J. Boelens CFD Analysis of the Flow Around the X-31 Aircraft at High Angle of Attack , 2009 .

[21]  Jens Neumann,et al.  Numerical Simulation of Maneuvering Aircraft by Aerodynamic, Flight Mechanics and Structural Mechanics Coupling , 2007 .

[22]  Brent R. Cobleigh High-angle-of-attack yawing moment asymmetry of the X-31 aircraft from flight test , 1994 .

[23]  Russell M. Cummings,et al.  Experiences in accurately predicting time-dependent flows , 2008 .

[24]  Russell M. Cummings,et al.  Application of Volterra Functions to X-31 Aircraft Model Motion , 2009 .

[25]  Steve L. Karman,et al.  Reynolds-Averaged Navier-Stokes Solutions for the CAWAPI F-16XL Using Different Hybrid Grids , 2009 .

[26]  Robert Tomaro,et al.  Cobalt: a parallel, implicit, unstructured Euler/Navier-Stokes solver , 1998 .

[27]  Dan D. Vicroy,et al.  SACCON Static Wind Tunnel Tests at DNW-NWB and 14'x22' NASA LaRC , 2010 .

[28]  O. J. Boelens,et al.  Comparison of Measured and Block Structured Simulation Results for the F-16XL Aircraft , 2009 .

[29]  H. Dol,et al.  Turbulence modelling for leading-edge vortex flows , 2002 .

[30]  Russell M. Cummings,et al.  Assessment of Sting Effect on X-31 Aircraft Model Using CFD , 2010 .

[31]  Simone Crippa,et al.  Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions , 2009 .

[32]  Christian Klein,et al.  Stationäre Druckmessungen mittels PSP und Druckanbohrungen, sowie Kraft- und Momentenmessungen am X-31 RC-Modell im DNW-NWB , 2005 .

[33]  Robert Tomaro,et al.  The defining methods of Cobalt-60 - A parallel, implicit, unstructured Euler/Navier-Stokes flow solver , 1999 .

[34]  James Clifton,et al.  Aircraft Stability and Control Characteristics Determined by System Identification of CFD Simulations , 2008 .

[35]  Martin Rein,et al.  Experimental and numerical aspects of simulating unsteady flows around the X-31 configuration , 2009 .

[36]  Dan D. Vicroy,et al.  Integrated Computational/Experimental Approach to UCAV and Delta-Canard Configurations Regarding Stability & Control , 2009 .

[37]  G. Bergeles,et al.  Notes on Numerical Fluid Mechanics and Multidisciplinary Design , 2012 .