Silicon Oxide (SiOx): A Promising Material for Resistance Switching?

Interest in resistance switching is currently growing apace. The promise of novel high‐density, low‐power, high‐speed nonvolatile memory devices is appealing enough, but beyond that there are exciting future possibilities for applications in hardware acceleration for machine learning and artificial intelligence, and for neuromorphic computing. A very wide range of material systems exhibit resistance switching, a number of which—primarily transition metal oxides—are currently being investigated as complementary metal–oxide–semiconductor (CMOS)‐compatible technologies. Here, the case is made for silicon oxide, perhaps the most CMOS‐compatible dielectric, yet one that has had comparatively little attention as a resistance‐switching material. Herein, a taxonomy of switching mechanisms in silicon oxide is presented, and the current state of the art in modeling, understanding fundamental switching mechanisms, and exciting device applications is summarized. In conclusion, silicon oxide is an excellent choice for resistance‐switching technologies, offering a number of compelling advantages over competing material systems.

[1]  Qi Liu,et al.  Breaking the Current‐Retention Dilemma in Cation‐Based Resistive Switching Devices Utilizing Graphene with Controlled Defects , 2018, Advanced materials.

[2]  S. Menzel,et al.  Field-enhanced route to generating anti-Frenkel pairs in HfO2 , 2018 .

[3]  Mark Buckwell,et al.  Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices , 2018, Front. Neurosci..

[4]  Anthony J. Kenyon,et al.  Light-activated resistance switching in SiOx RRAM devices , 2017 .

[5]  Jiaming Zhang,et al.  Analogue signal and image processing with large memristor crossbars , 2017, Nature Electronics.

[6]  E. Miranda,et al.  Voltage-Driven Hysteresis Model for Resistive Switching: SPICE Modeling and Circuit Applications , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Rainer Waser,et al.  Electrochemical Tantalum Oxide for Resistive Switching Memories , 2017, Advanced materials.

[8]  Qing Wu,et al.  A novel true random number generator based on a stochastic diffusive memristor , 2017, Nature Communications.

[9]  I. Valov Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs) , 2017 .

[10]  A Mehonic,et al.  Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure , 2017, Scientific Reports.

[11]  J. Yang,et al.  Truly Electroforming‐Free and Low‐Energy Memristors with Preconditioned Conductive Tunneling Paths , 2017 .

[12]  W. Chen,et al.  Low-Temperature Characterization of Cu–Cu:Silica-Based Programmable Metallization Cell , 2017, IEEE Electron Device Letters.

[13]  T. Kimoto,et al.  Appearance of quantum point contact in Pt/NiO/Pt resistive switching cells , 2017 .

[14]  Anthony J. Kenyon,et al.  Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices , 2017 .

[15]  J. Yang,et al.  Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors , 2017, Nature Communications.

[16]  Ilia Valov,et al.  Interfacial Metal-Oxide Interactions in Resistive Switching Memories. , 2017, ACS applied materials & interfaces.

[17]  A. Shluger,et al.  Diffusion and aggregation of oxygen vacancies in amorphous silica , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Earl E. Swartzlander,et al.  Memcomputing (Memristor + Computing) in Intrinsic SiOx-Based Resistive Switching Memory: Arithmetic Operations for Logic Applications , 2017, IEEE Transactions on Electron Devices.

[19]  Alexander L. Shluger,et al.  A microscopic mechanism of dielectric breakdown in SiO2 films: An insight from multi-scale modeling , 2017 .

[20]  I. Valov,et al.  Multibit memory operation of metal-oxide bi-layer memristors , 2017, Scientific Reports.

[21]  Jianhui Zhao,et al.  Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure , 2017 .

[22]  R Waser,et al.  SET kinetics of electrochemical metallization cells: influence of counter-electrodes in SiO2/Ag based systems , 2017, Nanotechnology.

[23]  Jessamyn A. Fairfield,et al.  Quantum point contacts and resistive switching in Ni/NiO nanowire junctions , 2016 .

[24]  A. Shluger,et al.  A mechanism for Frenkel defect creation in amorphous SiO2 facilitated by electron injection , 2016, Nanotechnology.

[25]  Alessandro Calderoni,et al.  Postcycling Degradation in Metal-Oxide Bipolar Resistive Switching Memory , 2016, IEEE Transactions on Electron Devices.

[26]  Yao-Feng Chang,et al.  Proton exchange reactions in SiOx-based resistive switching memory: Review and insights from impedance spectroscopy , 2016 .

[27]  R. Waser,et al.  (Invited) Mobile Ions, Transport and Redox Processes in Memristive Devices , 2016 .

[28]  Hao Jiang,et al.  Electrochemical metallization switching with a platinum group metal in different oxides. , 2016, Nanoscale.

[29]  Wei D. Lu,et al.  Nanoscale electrochemistry using dielectric thin films as solid electrolytes. , 2016, Nanoscale.

[30]  J. Baugh,et al.  Electrical Breakdown in Thin Si Oxide Modeled by a Quantum Point Contact Network , 2016, IEEE Transactions on Electron Devices.

[31]  A. Shluger,et al.  Nanoscale Transformations in Metastable, Amorphous, Silicon‐Rich Silica , 2016, Advanced materials.

[32]  R. Waser,et al.  Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications , 2016 .

[33]  Daniele Ielmini,et al.  Resistive switching memories based on metal oxides: mechanisms, reliability and scaling , 2016 .

[34]  Masakazu Aono,et al.  Humidity effects on the redox reactions and ionic transport in a Cu/Ta2O5/Pt atomic switch structure , 2016 .

[35]  Feng Miao,et al.  Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors , 2016, Nature Communications.

[36]  Anthony J. Kenyon,et al.  Nanosecond Analog Programming of Substoichiometric Silicon Oxide Resistive RAM , 2016, IEEE Transactions on Nanotechnology.

[37]  C. Hwang,et al.  Bias-polarity-dependent resistance switching in W/SiO2/Pt and W/SiO2/Si/Pt structures , 2016, Scientific Reports.

[38]  Adnan Mehonic,et al.  Emulating the Electrical Activity of the Neuron Using a Silicon Oxide RRAM Cell , 2016, Front. Neurosci..

[39]  Fei Zhou,et al.  Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide , 2016, Scientific Reports.

[40]  B. Rajendran,et al.  A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States. , 2016, Nano letters.

[41]  Earl E. Swartzlander,et al.  Bidirectional voltage biased implication operations using SiOx based unipolar memristors , 2015 .

[42]  Alessandro Calderoni,et al.  Engineering ReRAM for high-density applications , 2015 .

[43]  E. Vianello,et al.  On the Origin of Low-Resistance State Retention Failure in HfO2-Based RRAM and Impact of Doping/Alloying , 2015, IEEE Transactions on Electron Devices.

[44]  A. Kenyon,et al.  Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM , 2015, Nanoscale.

[45]  I. Valov,et al.  Graphene‐Modified Interface Controls Transition from VCM to ECM Switching Modes in Ta/TaOx Based Memristive Devices , 2015, Advanced materials.

[46]  Stefano Ambrogio,et al.  Noise-Induced Resistance Broadening in Resistive Switching Memory—Part II: Array Statistics , 2015, IEEE Transactions on Electron Devices.

[47]  Alessandro Calderoni,et al.  Voltage-Controlled Cycling Endurance of HfOx-Based Resistive-Switching Memory , 2015, IEEE Transactions on Electron Devices.

[48]  Jan van den Hurk,et al.  Processes and Limitations during Filament Formation and Dissolution in GeSx-based ReRAM Memory Cells , 2015 .

[49]  E. Miranda Compact Model for the Major and Minor Hysteretic I–V Loops in Nonlinear Memristive Devices , 2015, IEEE Transactions on Nanotechnology.

[50]  A. Shluger,et al.  Optical signatures of intrinsic electron localization in amorphous SiO2 , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  Stefano Ambrogio,et al.  True Random Number Generation by Variability of Resistive Switching in Oxide-Based Devices , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[52]  A. P. Yatmanov,et al.  Bipolar resistive switching and charge transport in silicon oxide memristor , 2015 .

[53]  A. Kenyon,et al.  Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory , 2015 .

[54]  Rainer Waser,et al.  Modeling of Quantized Conductance Effects in Electrochemical Metallization Cells , 2015, IEEE Transactions on Nanotechnology.

[55]  Guido Groeseneken,et al.  Endurance degradation mechanisms in TiN\Ta2O5\Ta resistive random-access memory cells , 2015 .

[56]  Fei Zeng,et al.  Resistive switching and conductance quantization in Ag/SiO2/indium tin oxide resistive memories , 2014 .

[57]  Rainer Waser,et al.  Impact of the Counter‐Electrode Material on Redox Processes in Resistive Switching Memories , 2014 .

[58]  Fei Zhou,et al.  Intrinsic SiOx-based unipolar resistive switching memory. I. Oxide stoichiometry effects on reversible switching and program window optimization , 2014 .

[59]  James M Tour,et al.  Nanoporous silicon oxide memory. , 2014, Nano letters.

[60]  Alessandro Calderoni,et al.  Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I - Set/Reset Variability , 2014, IEEE Transactions on Electron Devices.

[61]  Wei D. Lu,et al.  Electrochemical dynamics of nanoscale metallic inclusions in dielectrics , 2014, Nature Communications.

[62]  R. Clark Emerging Applications for High K Materials in VLSI Technology , 2014, Materials.

[63]  Anne Siemon,et al.  Applicability of Well-Established Memristive Models for Simulations of Resistive Switching Devices , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[64]  A. Shluger,et al.  Nature of intrinsic and extrinsic electron trapping in SiO2 , 2014 .

[65]  M. Lanza A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope , 2014, Materials.

[66]  Li Ji,et al.  Integrated one diode-one resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. , 2014, Nano letters.

[67]  Rainer Waser,et al.  Nanobattery Effect in RRAMs—Implications on Device Stability and Endurance , 2014, IEEE Electron Device Letters.

[68]  Ilia Valov,et al.  Redox‐Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale , 2014 .

[69]  A. J. Kenyon,et al.  Quantum Conductance in Silicon Oxide Resistive Memory Devices , 2013, Scientific Reports.

[70]  James M Tour,et al.  High‐Performance and Low‐Power Rewritable SiOx 1 kbit One Diode–One Resistor Crossbar Memory Array , 2013, Advanced materials.

[71]  Hao Jiang,et al.  Low voltage resistive switching devices based on chemically produced silicon oxide , 2013 .

[72]  F. Zeng,et al.  Conductance quantization in oxygen-anion-migration-based resistive switching memory devices , 2013 .

[73]  R. Waser,et al.  Generic relevance of counter charges for cation-based nanoscale resistive switching memories. , 2013, ACS nano.

[74]  Li Ji,et al.  Oxygen-induced bi-modal failure phenomenon in SiOx-based resistive switching memory , 2013 .

[75]  C. Cagli,et al.  Quantum-size effects in hafnium-oxide resistive switching , 2013 .

[76]  H. Iwai,et al.  Effect of an ultrathin SiO2 interfacial layer on the hysteretic current–voltage characteristics of CeOx-based metal–insulator–metal structures , 2013 .

[77]  S. Menzel,et al.  Switching kinetics of electrochemical metallization memory cells. , 2013, Physical chemistry chemical physics : PCCP.

[78]  R. Soni,et al.  Rate limiting step for the switching kinetics in Cu doped Ge0.3Se0.7 based memory devices with symmetrical and asymmetrical electrodes , 2013 .

[79]  Jan van den Hurk,et al.  Nanobatteries in redox-based resistive switches require extension of memristor theory , 2013, Nature Communications.

[80]  Rainer Waser,et al.  Bond nature of active metal ions in SiO2-based electrochemical metallization memory cells. , 2013, Nanoscale.

[81]  S. Sze,et al.  Characteristics and Mechanisms of Silicon-Oxide-Based Resistance Random Access Memory , 2013, IEEE Electron Device Letters.

[82]  Ilia Valov,et al.  Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories , 2013, Journal of Solid State Electrochemistry.

[83]  Jun Xu,et al.  Resistive switching mechanism in silicon highly rich SiOx (x < 0.75) films based on silicon dangling bonds percolation model , 2013 .

[84]  Yen-Ting Chen,et al.  Understanding the resistive switching characteristics and mechanism in active SiOx-based resistive switching memory , 2012 .

[85]  R. Rizk,et al.  Electrically tailored resistance switching in silicon oxide , 2012, Nanotechnology.

[86]  T. Hasegawa,et al.  Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch , 2012, Nanotechnology.

[87]  L. Goux,et al.  Balancing SET/RESET Pulse for $>\hbox{10}^{10}$ Endurance in $\hbox{HfO}_{2}\hbox{/Hf}$ 1T1R Bipolar RRAM , 2012, IEEE Transactions on Electron Devices.

[88]  Shimeng Yu,et al.  A SPICE Compact Model of Metal Oxide Resistive Switching Memory With Variations , 2012, IEEE Electron Device Letters.

[89]  E. Miranda,et al.  The Quantum Point-Contact Memristor , 2012, IEEE Electron Device Letters.

[90]  J. W. McPherson,et al.  Time dependent dielectric breakdown physics - Models revisited , 2012, Microelectron. Reliab..

[91]  Yen-Ting Chen,et al.  Study of polarity effect in SiOx-based resistive switching memory , 2012 .

[92]  Yiwei Liu,et al.  Observation of Conductance Quantization in Oxide‐Based Resistive Switching Memory , 2012, Advanced materials.

[93]  Hiroshi Iwai,et al.  Nonlinear conductance quantization effects in CeOx/SiO2-based resistive switching devices , 2012 .

[94]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[95]  R. Waser,et al.  Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. , 2012, Nanoscale.

[96]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[97]  Anthony J. Kenyon,et al.  Resistive switching in silicon sub-oxide films , 2012 .

[98]  Derek Abbott,et al.  Memristive Device Fundamentals and Modeling: Applications to Circuits and Systems Simulation , 2012, Proceedings of the IEEE.

[99]  Hao Yu,et al.  Analysis and Modeling of Internal State Variables for Dynamic Effects of Nonvolatile Memory Devices , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[100]  R. Waser,et al.  Effects of Moisture on the Switching Characteristics of Oxide‐Based, Gapless‐Type Atomic Switches , 2012 .

[101]  J. Tour,et al.  Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene , 2012, Nature Communications.

[102]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[103]  Yasuhisa Naitoh,et al.  Non-volatile high-speed resistance switching nanogap junction memory , 2011 .

[104]  Rainer Waser,et al.  Redox processes in silicon dioxide thin films using copper microelectrodes , 2011 .

[105]  Wei Wang,et al.  FPGA Based on Integration of CMOS and RRAM , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[106]  J. Tour,et al.  In situ imaging of the conducting filament in a silicon oxide resistive switch , 2011, Scientific Reports.

[107]  M. Tsai,et al.  Robust High-Resistance State and Improved Endurance of $\hbox{HfO}_{X}$ Resistive Memory by Suppression of Current Overshoot , 2011, IEEE Electron Device Letters.

[108]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[109]  D. Wolansky,et al.  Impact of Temperature on the Resistive Switching Behavior of Embedded $\hbox{HfO}_{2}$-Based RRAM Devices , 2011, IEEE Transactions on Electron Devices.

[110]  W. B. Knowlton,et al.  A Physical Model of the Temperature Dependence of the Current Through $\hbox{SiO}_{2}\hbox{/}\hbox{HfO}_{2}$ Stacks , 2011, IEEE Transactions on Electron Devices.

[111]  Hyunsang Hwang,et al.  Resistive switching characteristics of ultra-thin TiOx , 2011 .

[112]  S. Long,et al.  CMOS Compatible Nonvolatile Memory Devices Based on SiO2/Cu/SiO2 Multilayer Films * , 2011 .

[113]  P. Gonon,et al.  Back-end-of-line compatible Conductive Bridging RAM based on Cu and SiO2 , 2011 .

[114]  Peng Li,et al.  Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[115]  L. Chua Resistance switching memories are memristors , 2011, Handbook of Memristor Networks.

[116]  J. Yang,et al.  High switching endurance in TaOx memristive devices , 2010 .

[117]  Myoung-Jae Lee,et al.  Modeling for bipolar resistive memory switching in transition-metal oxides , 2010 .

[118]  J. Tour,et al.  Resistive switches and memories from silicon oxide. , 2010, Nano letters.

[119]  E. Miranda,et al.  Model for the Resistive Switching Effect in $ \hbox{HfO}_{2}$ MIM Structures Based on the Transmission Properties of Narrow Constrictions , 2010, IEEE Electron Device Letters.

[120]  Sung-Mo Kang,et al.  Compact Models for Memristors Based on Charge-Flux Constitutive Relationships , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[121]  Hyunsang Hwang,et al.  Investigation of State Stability of Low-Resistance State in Resistive Memory , 2010, IEEE Electron Device Letters.

[122]  D. Ielmini,et al.  Size-Dependent Retention Time in NiO-Based Resistive-Switching Memories , 2010, IEEE Electron Device Letters.

[123]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[124]  J. Yang,et al.  Electrical transport and thermometry of electroformed titanium dioxide memristive switches , 2009 .

[125]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[126]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[127]  Ru Huang,et al.  Unipolar Resistive Switch Based on Silicon Monoxide Realized by CMOS Technology , 2009, IEEE Electron Device Letters.

[128]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[129]  Kin Leong Pey,et al.  The radial distribution of defects in a percolation path , 2008 .

[130]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[131]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[132]  M. Breitwisch Phase Change Memory , 2008, 2008 International Interconnect Technology Conference.

[133]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[134]  M. Kozicki,et al.  Low current resistive switching in Cu–SiO2 cells , 2008 .

[135]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[136]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[137]  G. Ghibaudo,et al.  Review on high-k dielectrics reliability issues , 2005, IEEE Transactions on Device and Materials Reliability.

[138]  Dietmar Schroeder,et al.  Physical explanation of the barrier height temperature dependence in metal-oxide-semiconductor leakage current models , 2003 .

[139]  J. Suehle Ultrathin gate oxide reliability: physical models, statistics, and characterization , 2002 .

[140]  Enrique Miranda,et al.  Modeling of the I-V characteristics of high-field stressed MOS structures using a Fowler-Nordheim-type tunneling expression , 2002, Microelectron. Reliab..

[141]  Marc Heyns,et al.  Charge Transport after Hard Breakdown in Gate Oxides , 2002 .

[142]  Byung Jin Cho,et al.  Evolution of quasi-breakdown in thin gate oxides , 2002 .

[143]  Yasuhisa Omura,et al.  Transport characteristics of posthard breakdown thin silicon oxide films and consideration of physical models , 2002 .

[144]  Gabriella Ghidini,et al.  Noise characteristics of radiation-induced soft breakdown current in ultrathin gate oxides , 2001 .

[145]  Giuseppe Iannaccone,et al.  Current noise at the oxide hard-breakdown , 2001 .

[146]  D. Bremaud,et al.  Electrical current distribution across a metal–insulator–metal structure during bistable switching , 2001, cond-mat/0104452.

[147]  John F. Conley,et al.  Heavy-ion-induced soft breakdown of thin gate oxides , 2001 .

[148]  Jordi Suñé,et al.  Mesoscopic approach to the soft breakdown failure mode in ultrathin SiO2 films , 2001 .

[149]  Jordi Suñé,et al.  Analysis of the degradation and breakdown of thin SiO/sub 2/ films under static and dynamic tests using a two-step stress procedure , 2000 .

[150]  R. Degraeve,et al.  Reliability: a possible showstopper for oxide thickness scaling? , 2000 .

[151]  Jordi Suñé,et al.  Monitoring the degradation that causes the breakdown of ultrathin ( 2 gate oxides , 2000 .

[152]  J. McPherson,et al.  Molecular model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics and the reliability implications for hyper-thin gate oxide , 2000 .

[153]  J. Stathis,et al.  Ultra-thin oxide reliability for ULSI applications , 2000 .

[154]  J. Stathis Percolation models for gate oxide breakdown , 1999 .

[155]  Salvatore Lombardo,et al.  Soft breakdown of gate oxides in metal–SiO2–Si capacitors under stress with hot electrons , 1999 .

[156]  D. Ting,et al.  An embedded quantum wire model of dielectric breakdown , 1999 .

[157]  Tanya Nigam,et al.  Model for the current–voltage characteristics of ultrathin gate oxides after soft breakdown , 1998 .

[158]  Tanya Nigam,et al.  Soft breakdown in ultrathin gate oxides: Correlation with the percolation theory of nonlinear conductors , 1998 .

[159]  J. McPherson,et al.  UNDERLYING PHYSICS OF THE THERMOCHEMICAL E MODEL IN DESCRIBING LOW-FIELD TIME-DEPENDENT DIELECTRIC BREAKDOWN IN SIO2 THIN FILMS , 1998 .

[160]  Alessandro Paccagnella,et al.  Ionizing radiation induced leakage current on ultra-thin gate oxides , 1997 .

[161]  S. Bruyère,et al.  Dielectric reliability in deep-submicron technologies: From thin to ultrathin oxides , 1997 .

[162]  K. Taniguchi,et al.  Hot-electron-induced quasibreakdown of thin gate oxides , 1997 .

[163]  Jack C. Lee,et al.  Modeling of stress-induced leakage current in ultrathin oxides with the trap-assisted tunneling mechanism , 1997 .

[164]  Gerard Ghibaudo,et al.  Quasi-breakdown in ultrathin gate dielectrics , 1997 .

[165]  James H. Stathis,et al.  On the relationship between stress induced leakage currents and catastrophic breakdown in ultra-thin SiO2 based dielectrics , 1997 .

[166]  Tanya Nigam,et al.  Definition of dielectric breakdown for ultra thin (<2 nm) gate oxides , 1997 .

[167]  K. Fu,et al.  Partial breakdown of the tunnel oxide in floating gate devices , 1997 .

[168]  Kenji Taniguchi,et al.  Electrical stress-induced variable range hopping conduction in ultrathin silicon dioxides , 1997 .

[169]  Jordi Suñé,et al.  Breakdown of thin gate silicon dioxide films—A review , 1996 .

[170]  M. Heyns,et al.  Soft Breakdown of Ultra-Thin Gate Oxide Layers , 1995, ESSDERC '95: Proceedings of the 25th European Solid State Device Research Conference.

[171]  Marc Heyns,et al.  Wear-out of ultra-thin gate oxides during high-field electron tunnelling , 1995 .

[172]  J. Moodera,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[173]  D. Fleetwood,et al.  Effects of oxide traps, interface traps, and ‘‘border traps’’ on metal‐oxide‐semiconductor devices , 1993 .

[174]  Hisashi Fukuda,et al.  Oxide wearout phenomena of ultrathin SiO/sub 2/ film during high-field stress , 1992 .

[175]  Juan A. López-Villanueva,et al.  Analysis of the effects of constant‐current Fowler–Nordheim‐tunneling injection with charge trapping inside the potential barrier , 1991 .

[176]  Jordi Suñé,et al.  After-breakdown conduction through ultrathin SiO2 films in metal/insulator/semiconductor structures , 1991 .

[177]  Jordi Suñé,et al.  Nondestructive multiple breakdown events in very thin SiO2 films , 1989 .

[178]  James Stasiak,et al.  Trap creation in silicon dioxide produced by hot electrons , 1989 .

[179]  B. Riccò,et al.  High-field-induced degradation in ultra-thin SiO/sub 2/ films , 1988 .

[180]  Y. Nissan-Cohen,et al.  Trap generation and occupation dynamics in SiO2 under charge injection stress , 1986 .

[181]  Chenming Hu,et al.  Substrate hole current and oxide breakdown , 1986 .

[182]  B. Ricco,et al.  Novel Mechanism for Tunneling and Breakdown of Thin SiO 2 Films , 1983 .

[183]  Paul A. Solomon,et al.  Breakdown in silicon oxide−A review , 1977 .

[184]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[185]  M. Shatzkes,et al.  On the nature of conduction and switching in SiO2 , 1974 .

[186]  D. W. Ormond,et al.  Dielectric Breakdown in Silicon Dioxide Films on Silicon I . Measurement and Interpretation , 1972 .

[187]  L. Chua Memristor-The missing circuit element , 1971 .

[188]  N. Klein,et al.  Switching and breakdown in films , 1971 .

[189]  D. Morgan,et al.  A model for filament growth and switching in amorphous oxide films , 1970 .

[190]  A. David Pearson,et al.  FILAMENTARY CONDUCTION IN SEMICONDUCTING GLASS DIODES , 1969 .

[191]  J. O'dwyer,et al.  Theory of Dielectric Breakdown in Solids , 1969 .

[192]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[193]  P. Budenstein,et al.  Breakdown Conduction in Al‐SiO‐Al Capacitors , 1967 .

[194]  N. Klein,et al.  The mechanism of self-healing electrical breakdown in MOS structures , 1966 .

[195]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[196]  D. Ielmini,et al.  Resistive Switching Device Technology Based on Silicon Oxide for Improved ON–OFF Ratio—Part I: Memory Devices , 2018, IEEE Transactions on Electron Devices.

[197]  A. Edwards,et al.  Total-Ionizing-Dose Effects on Resistance Stability of Programmable Metallization Cell Based Memory and Selectors , 2017, IEEE Transactions on Nuclear Science.

[198]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[199]  Diana Adler,et al.  Electronic Transport In Mesoscopic Systems , 2016 .

[200]  E. Miranda,et al.  Multiple Diode-Like Conduction in Resistive Switching SiOx-Based MIM Devices , 2015, IEEE Transactions on Nanotechnology.

[201]  Jordi Suñé,et al.  Equivalent circuit modeling of the bistable conduction characteristics in electroformed thin dielectric films , 2015, Microelectron. Reliab..

[202]  Anthony J. Kenyon,et al.  Resistive switching in oxides , 2015 .

[203]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[204]  Uri C. Weiser,et al.  TEAM: ThrEshold Adaptive Memristor Model , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[205]  Jordi Suñé,et al.  Electron transport through broken down ultra-thin SiO2 layers in MOS devices , 2004, Microelectron. Reliab..

[206]  D. Dumin,et al.  Oxide reliability : a summary of silicon oxide wearout, breakdown, and reliability , 2002 .

[207]  Guido Groeseneken,et al.  Relation between breakdown mode and location in short-channel nMOSFETs and its impact on reliability specifications , 2001 .

[208]  Guido Groeseneken,et al.  New insights in the relation between electron trap generation and the statistical properties of oxide breakdown , 1998 .

[209]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[210]  Jordi Suñé,et al.  Exploratory observations of post‐breakdown conduction in polycrystalline‐silicon and metal‐gated thin‐oxide metal‐oxide‐semiconductor capacitors , 1993 .

[211]  D. Lamb,et al.  A non-filamentary switching action in thermally grown silicon dioxide films , 1967 .

[212]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .