On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique
暂无分享,去创建一个
[1] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[2] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[3] D. M. Larsen. Variational studies of bound states of the H − ion in a magnetic field , 1979 .
[4] D. Longsine,et al. Simultaneous rayleigh-quotient minimization methods for Ax=λBx , 1980 .
[5] The hydrogen atom in strong magnetic fields , 1981 .
[6] Note on binding energies of helium-like systems in magnetic fields , 1982 .
[7] The multigrid method for accelerated solution of the discretized Schrödinger equation , 1983 .
[8] G. Baszenski. n-th Order Polynomial Spline Blending , 1985 .
[9] Hanns Ruder,et al. Atoms in strong magnetic fields , 1987 .
[10] V. N. Temli︠a︡kov. Approximation of functions with bounded mixed derivative , 1989 .
[11] Morgan,et al. Radius of convergence and analytic behavior of the 1/Z expansion. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[12] Wolfgang Hackbusch,et al. Parallel algorithms for partial differential equations - Proceedings of the sixth GAMM-seminar - Kiel, January 19-21, 1990 , 1991 .
[13] Michael Griebel,et al. A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.
[14] Hans-Joachim Bungartz,et al. Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung , 1992 .
[15] Michael Griebel,et al. The Combination Technique for the Sparse Grid Solution of PDE's on Multiprocessor Machines , 1992, Parallel Process. Lett..
[16] R. Roitzsch,et al. A two-dimensional multilevel adaptive finite element method for the time-independent Schrödinger equation , 1993 .
[17] T. Störtkuhl,et al. On the Parallel Solution of 3D PDEs on a Network of Workstations and on Vector Computers , 1993, Parallel Computer Architectures.
[18] Hans-Joachim Bungartz,et al. Pointwise Convergence Of The Combination Technique For Laplace's Equation , 1994 .
[19] U. Rüde,et al. Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems , 1992, Forschungsberichte, TU Munich.
[20] Bodo Erdmann,et al. A self-adaptive multilevel finite element method for the stationary Schrödinger equation in three space dimensions , 1994 .
[21] Scott B. Baden,et al. Scalable Parallel Numerical Methods and Software Tools for Material Design , 1994, PPSC.
[22] Christoph Zenger,et al. Sparse Grids: Applications to Multi-dimensional Schroedinger Problems , 1995 .
[23] Michael Griebel,et al. The efficient solution of fluid dynamics problems by the combination technique , 1995, Forschungsberichte, TU Munich.
[24] Sergei V. Pereverzev,et al. Information Complexity of Multivariate Fredholm Equations in Sobolev Classes , 1995 .
[25] A. Scrinzi. Helium in a cylindrically symmetric field , 1996 .
[26] Jones,et al. Hartree-Fock studies of atoms in strong magnetic fields. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[27] Johansson,et al. Exact solution for a hydrogen atom in a magnetic field of arbitrary strength. , 1996, Physical Review A. Atomic, Molecular, and Optical Physics.
[28] Karin Frank,et al. Information Complexity of Multivariate Fredholm Integral Equations in Sobolev Classes , 1996, J. Complex..
[29] Walter Huber,et al. Turbulenzsimulation mit der Kombinationsmethode auf Workstation-Netzen und Parallelrechnern , 1996 .
[30] Michael Griebel,et al. Optimized Approximation Spaces for Operator Equations , 1998 .
[31] Hyperspherical close-coupling calculations for helium in a strong magnetic field , 1998 .
[32] Alan Edelman,et al. Multiscale Computation with Interpolating Wavelets , 1998 .
[33] Aihui Zhou,et al. Error analysis of the combination technique , 1999, Numerische Mathematik.
[34] W. Sickel,et al. Interpolation on Sparse Grids and Tensor Products of Nikol'skij–Besov Spaces , 1999 .
[35] The helium atom in a strong magnetic field , 1999, physics/9902059.
[36] Michael Griebel,et al. Sparse grids for boundary integral equations , 1999, Numerische Mathematik.
[37] Gerhard Zumbusch,et al. A Sparse Grid PDE Solver; Discretization, Adaptivity, Software Design and Parallelization , 2000 .
[38] M. Griebel,et al. Optimized Tensor-Product Approximation Spaces , 2000 .