On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique

Abstract We introduce the combination technique for the numerical solution of d -dimensional eigenproblems on sparse grids. Here, O ( d ·(log N ) d -1 ) different problems, each of size O ( N ), have to be solved independently. This is in contrast to the one problem of size O ( N d ) for a conventional finite element discretization, where N denotes the number of grid points in one coordinate direction. Therefore, also higher dimensional eigenvalue problems can be treated by our sparse grid combination approach. We apply this method to solve the three-dimensional Schrodinger equation for hydrogen (one-electron problem) and the six-dimensional Schrodinger equation for helium (two-electron problem) in strong magnetic and electric fields.

[1]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[2]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[3]  D. M. Larsen Variational studies of bound states of the H − ion in a magnetic field , 1979 .

[4]  D. Longsine,et al.  Simultaneous rayleigh-quotient minimization methods for Ax=λBx , 1980 .

[5]  The hydrogen atom in strong magnetic fields , 1981 .

[6]  Note on binding energies of helium-like systems in magnetic fields , 1982 .

[7]  The multigrid method for accelerated solution of the discretized Schrödinger equation , 1983 .

[8]  G. Baszenski n-th Order Polynomial Spline Blending , 1985 .

[9]  Hanns Ruder,et al.  Atoms in strong magnetic fields , 1987 .

[10]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .

[11]  Morgan,et al.  Radius of convergence and analytic behavior of the 1/Z expansion. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[12]  Wolfgang Hackbusch,et al.  Parallel algorithms for partial differential equations - Proceedings of the sixth GAMM-seminar - Kiel, January 19-21, 1990 , 1991 .

[13]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[14]  Hans-Joachim Bungartz,et al.  Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung , 1992 .

[15]  Michael Griebel,et al.  The Combination Technique for the Sparse Grid Solution of PDE's on Multiprocessor Machines , 1992, Parallel Process. Lett..

[16]  R. Roitzsch,et al.  A two-dimensional multilevel adaptive finite element method for the time-independent Schrödinger equation , 1993 .

[17]  T. Störtkuhl,et al.  On the Parallel Solution of 3D PDEs on a Network of Workstations and on Vector Computers , 1993, Parallel Computer Architectures.

[18]  Hans-Joachim Bungartz,et al.  Pointwise Convergence Of The Combination Technique For Laplace's Equation , 1994 .

[19]  U. Rüde,et al.  Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems , 1992, Forschungsberichte, TU Munich.

[20]  Bodo Erdmann,et al.  A self-adaptive multilevel finite element method for the stationary Schrödinger equation in three space dimensions , 1994 .

[21]  Scott B. Baden,et al.  Scalable Parallel Numerical Methods and Software Tools for Material Design , 1994, PPSC.

[22]  Christoph Zenger,et al.  Sparse Grids: Applications to Multi-dimensional Schroedinger Problems , 1995 .

[23]  Michael Griebel,et al.  The efficient solution of fluid dynamics problems by the combination technique , 1995, Forschungsberichte, TU Munich.

[24]  Sergei V. Pereverzev,et al.  Information Complexity of Multivariate Fredholm Equations in Sobolev Classes , 1995 .

[25]  A. Scrinzi Helium in a cylindrically symmetric field , 1996 .

[26]  Jones,et al.  Hartree-Fock studies of atoms in strong magnetic fields. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[27]  Johansson,et al.  Exact solution for a hydrogen atom in a magnetic field of arbitrary strength. , 1996, Physical Review A. Atomic, Molecular, and Optical Physics.

[28]  Karin Frank,et al.  Information Complexity of Multivariate Fredholm Integral Equations in Sobolev Classes , 1996, J. Complex..

[29]  Walter Huber,et al.  Turbulenzsimulation mit der Kombinationsmethode auf Workstation-Netzen und Parallelrechnern , 1996 .

[30]  Michael Griebel,et al.  Optimized Approximation Spaces for Operator Equations , 1998 .

[31]  Hyperspherical close-coupling calculations for helium in a strong magnetic field , 1998 .

[32]  Alan Edelman,et al.  Multiscale Computation with Interpolating Wavelets , 1998 .

[33]  Aihui Zhou,et al.  Error analysis of the combination technique , 1999, Numerische Mathematik.

[34]  W. Sickel,et al.  Interpolation on Sparse Grids and Tensor Products of Nikol'skij–Besov Spaces , 1999 .

[35]  The helium atom in a strong magnetic field , 1999, physics/9902059.

[36]  Michael Griebel,et al.  Sparse grids for boundary integral equations , 1999, Numerische Mathematik.

[37]  Gerhard Zumbusch,et al.  A Sparse Grid PDE Solver; Discretization, Adaptivity, Software Design and Parallelization , 2000 .

[38]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .