Generation in Microbial Fuel Cells Adhesion to Electrodes and Current MR-1 Enhances Shewanella oneidensis in Polysaccharide Biosynthesis Gene SO 3177 Disruption of the Putative Cell Surface

[1]  D. R. Bond,et al.  The Mtr Respiratory Pathway Is Essential for Reducing Flavins and Electrodes in Shewanella oneidensis , 2009, Journal of bacteriology.

[2]  Kazuya Watanabe,et al.  Electron shuttles in biotechnology. , 2009, Current opinion in biotechnology.

[3]  Kazuya Watanabe,et al.  Recent developments in microbial fuel cell technologies for sustainable bioenergy. , 2008, Journal of bioscience and bioengineering.

[4]  D. R. Bond,et al.  Shewanella secretes flavins that mediate extracellular electron transfer , 2008, Proceedings of the National Academy of Sciences.

[5]  Samantha B. Reed,et al.  Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants , 2008, Applied and Environmental Microbiology.

[6]  J. Lloyd,et al.  Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer , 2007, Applied and Environmental Microbiology.

[7]  C. Fuqua,et al.  Biofilm formation by plant-associated bacteria. , 2007, Annual review of microbiology.

[8]  J. Ruiz-Sainz,et al.  Attachment of bacteria to the roots of higher plants. , 2007, FEMS microbiology letters.

[9]  T. Beveridge,et al.  The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides. , 2007, Microbiology.

[10]  Liang Shi,et al.  High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. , 2006, Journal of the American Chemical Society.

[11]  Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis. , 2006, Journal of bacteriology.

[12]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Raetz,et al.  A Formyltransferase Required for Polymyxin Resistance in Escherichia coli and the Modification of Lipid A with 4-Amino-4-deoxy-l-arabinose , 2005, Journal of Biological Chemistry.

[14]  A. Chakrabarty,et al.  Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide , 1995, Journal of Industrial Microbiology.

[15]  Jinru Chen,et al.  Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress. , 2004, International journal of food microbiology.

[16]  D. R. Bond,et al.  Electron Transfer by Desulfobulbus propionicus to Fe(III) and Graphite Electrodes , 2004, Applied and Environmental Microbiology.

[17]  Kelly P. Nevin,et al.  Dissimilatory Fe(III) and Mn(IV) reduction. , 1991, Advances in microbial physiology.

[18]  D. Lovley,et al.  Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells , 2003, Nature Biotechnology.

[19]  E. Vinogradov,et al.  The structure of the rough-type lipopolysaccharide from Shewanella oneidensis MR-1, containing 8-amino-8-deoxy-Kdo and an open-chain form of 2-acetamido-2-deoxy-D-galactose. , 2003, Carbohydrate research.

[20]  D. Newman,et al.  Genetic identification of a respiratory arsenate reductase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Byung Hong Kim,et al.  A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. , 2003, FEMS microbiology letters.

[22]  D. R. Bond,et al.  Electricity Production by Geobacter sulfurreducens Attached to Electrodes , 2003, Applied and Environmental Microbiology.

[23]  E. Vinogradov,et al.  Characterization of the Lipopolysaccharides and Capsules of Shewanella spp , 2002, Applied and Environmental Microbiology.

[24]  Kenneth H Nealson,et al.  Microbial metal-ion reduction and Mars: extraterrestrial expectations? , 2002, Current opinion in microbiology.

[25]  M. Doyle,et al.  Insertion Mutagenesis of wca Reduces Acid and Heat Tolerance of Enterohemorrhagic Escherichia coliO157:H7 , 2001, Journal of bacteriology.

[26]  R. Benz,et al.  Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. , 2001, Microbiology.

[27]  Dianne K. Newman,et al.  A role for excreted quinones in extracellular electron transfer , 2000, Nature.

[28]  R. Briandet,et al.  Listeria monocytogenes Scott A: Cell Surface Charge, Hydrophobicity, and Electron Donor and Acceptor Characteristics under Different Environmental Growth Conditions , 1999, Applied and Environmental Microbiology.

[29]  Byung Hong Kim,et al.  Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens , 1999 .

[30]  D. Roop,et al.  Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. , 1995, Gene.

[31]  M. Alexeyev,et al.  Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of gram-negative bacteria. , 1995, Gene.

[32]  Tslil Ophir,et al.  A Role for Exopolysaccharides in the Protection of Microorganisms from Desiccation , 1994, Applied and environmental microbiology.

[33]  H. Busscher,et al.  AUTOMATED IMAGE-ANALYSIS TO DETERMINE ZETA-POTENTIAL DISTRIBUTIONS IN PARTICULATE MICROELECTROPHORESIS , 1993 .

[34]  C. Galanos,et al.  Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels , 1990, Journal of clinical microbiology.

[35]  K. Nealson,et al.  Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor , 1988, Science.

[36]  P. Hitchcock,et al.  Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels , 1983, Journal of bacteriology.

[37]  E. E. L O G A N,et al.  Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing , 2022 .

[38]  E. E. L O G A N Microbial Fuel Cells : Methodology and Technology † , 2022 .