Hydrogen atom in a strong magnetic field: on the existence of the third integral of motion

The problem of the existence of the third integral of motion for the classical Hamiltonian describing a hydrogen atom in a magnetic field is studied by numerical methods. It is found that the third integral is isolating for all initial conditions for which the energy is lower than a critical energy, beyond which the phase orbits are unstable and the Hamilton system can behave stochastically. This critical energy depends upon the strength of the magnetic field and the value of the z component of the angular momentum. The critical energy approaches the (classical) ionisation energy in the weak-field and strong-field limits, while it is lowest in the transition region. The consequences for the quantum mechanical energy spectrum of the hydrogen atom are discussed: the existence of this approximate dynamical symmetry would allow for close anti-crossings of levels, and might facilitate the analytic calculations of the energy levels below the critical energy. In discussion of the correspondence diagram a criticism of an earlier paper is given.

[1]  G. M. Zaslavskii,et al.  STOCHASTIC INSTABILITY OF NON-LINEAR OSCILLATIONS , 1972 .

[2]  K. Whiteman Invariants and stability in classical mechanics , 1977 .

[3]  D. Kleppner,et al.  Evidence of an Approximate Symmetry for Hydrogen in a Uniform Magnetic Field , 1980 .

[4]  M. Mcdowell,et al.  Energy levels and bound-bound transitions of hydrogen atoms in strong magnetic fields , 1980 .

[5]  Yu. A. Gur'yan,et al.  Cyclotron and annihilation lines in γ-ray bursts , 1981, Nature.

[6]  D. Soper Classical field theory , 1976 .

[7]  Mikhail I. Rabinovich,et al.  Stochastic self-oscillations and turbulence , 1978 .

[8]  J. Neumann,et al.  Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen , 1929 .

[9]  R. Gajewski CHARGE MOTION IN SUPERIMPOSED COULOMB AND MAGNETIC FIELDS. , 1970 .

[10]  B. Simon,et al.  Separation of center of mass in homogeneous magnetic fields , 1978 .

[11]  A. Neveu Quantization of non-linear systems , 1977 .

[12]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[13]  C. Deutsch,et al.  Semi-classical approach to the strongly magnetized hydrogen atom , 1978 .

[14]  J. Simola,et al.  Energy levels of hydrogen atoms in a strong magnetic field , 1978 .

[15]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[16]  M. K. Ali,et al.  Reappearance of ordered motion in some non-integrable Hamiltonian systems , 1980 .

[17]  R. Keyes,et al.  Hydrogen atom in a strong magnetic field , 1956 .

[18]  C. Clark,et al.  The quadratic Zeeman effect in hydrogen Rydberg series , 1980 .

[19]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[20]  M. Berry QUANTIZATION OF MAPPINGS AND OTHER SIMPLE CLASSICAL MODELS , 1980 .

[21]  G. Börner X-rays from neutron stars , 1980 .

[22]  A. Rau,et al.  Energy levels of hydrogen in magnetic fields of arbitrary strength , 1976 .

[23]  V. Canuto,et al.  Hydrogen atom in intense magnetic field , 1972 .

[24]  M. Gutzwiller Classical Quantization of a Hamiltonian with Ergodic Behavior , 1980 .

[25]  R. Garstang Atoms in high magnetic fields (white dwarfs) , 1977 .

[26]  J. Angel Magnetic White Dwarfs , 1976 .

[27]  F. G. Gustavson,et al.  Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point , 1966 .

[28]  L. Schiff,et al.  Theory of the Quadratic Zeeman Effect , 1939 .

[29]  Joseph Ford,et al.  Stochastic transition in the unequal-mass Toda lattice , 1975 .

[30]  A. Rajagopal,et al.  Energy Spectrum of the Hydrogen Atom in a Strong Magnetic Field , 1972 .

[31]  H. Praddaude Energy Levels of Hydrogenlike Atoms in a Magnetic Field , 1972 .