Analysis of trajectory similarity and configuration similarity in on-the-fly surface-hopping simulation on multi-channel nonadiabatic photoisomerization dynamics.

We propose an "automatic" approach to analyze the results of the on-the-fly trajectory surface hopping simulation on the multi-channel nonadiabatic photoisomerization dynamics by considering the trajectory similarity and the configuration similarity. We choose a representative system phytochromobilin (P Φ B) chromophore model to illustrate the analysis protocol. After a large number of trajectories are obtained, it is possible to define the similarity of different trajectories by the Fréchet distance and to employ the trajectory clustering analysis to divide all trajectories into several clusters. Each cluster in principle represents a photoinduced isomerization reaction channel. This idea provides an effective approach to understand the branching ratio of the multi-channel photoisomerization dynamics. For each cluster, the dimensionality reduction is employed to understand the configuration similarity in the trajectory propagation, which provides the understanding of the major geometry evolution features in each reaction channel. The results show that this analysis protocol not only assigns all trajectories into different photoisomerization reaction channels but also extracts the major molecular motion without the requirement of the pre-known knowledge of the active photoisomerization site. As a side product of this analysis tool, it is also easy to find the so-called "typical" or "representative" trajectory for each reaction channel.

[1]  D. Yarkony,et al.  Conical Intersections: Theory, Computation and Experiment , 2011 .

[2]  Hans-Peter Kriegel,et al.  Density‐based clustering , 2011, WIREs Data Mining Knowl. Discov..

[3]  C. Lasser,et al.  Landau-Zener type surface hopping algorithms. , 2014, The Journal of chemical physics.

[4]  S. Hammes-Schiffer,et al.  Improvement of the Internal Consistency in Trajectory Surface Hopping , 1999 .

[5]  W. Thiel,et al.  Nonadiabatic decay dynamics of a benzylidene malononitrile. , 2012, The journal of physical chemistry. A.

[6]  C. Lasser,et al.  Nonadiabatic nuclear dynamics of the ammonia cation studied by surface hopping classical trajectory calculations. , 2014, The Journal of chemical physics.

[7]  S. Tretiak,et al.  Semiclassical Monte-Carlo approach for modelling non-adiabatic dynamics in extended molecules , 2013, Nature Communications.

[8]  W. Miller,et al.  A classical analog for electronic degrees of freedom in nonadiabatic collision processes , 1979 .

[9]  A. Bottoni,et al.  Product formation in rhodopsin by fast hydrogen motions. , 2011, Physical chemistry chemical physics : PCCP.

[10]  Lydia E Kavraki,et al.  Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction , 2006, Proc. Natl. Acad. Sci. USA.

[11]  Weitao Yang,et al.  Simultaneous-trajectory surface hopping: a parameter-free algorithm for implementing decoherence in nonadiabatic dynamics. , 2011, The Journal of chemical physics.

[12]  Qiang Shi,et al.  A derivation of the mixed quantum-classical Liouville equation from the influence functional formalism. , 2004, The Journal of chemical physics.

[13]  Michele Parrinello,et al.  Simplifying the representation of complex free-energy landscapes using sketch-map , 2011, Proceedings of the National Academy of Sciences.

[14]  K. Saita,et al.  On-the-fly ab initio molecular dynamics with multiconfigurational Ehrenfest method. , 2012, The Journal of chemical physics.

[15]  Yi-shin Su,et al.  Phytochrome structure and signaling mechanisms. , 2006, Annual review of plant biology.

[16]  Julius Philipp Paul Zauleck,et al.  Constructing Grids for Molecular Quantum Dynamics Using an Autoencoder. , 2017, Journal of chemical theory and computation.

[17]  E. Gross,et al.  Ab Initio Nonadiabatic Dynamics with Coupled Trajectories: A Rigorous Approach to Quantum (De)Coherence. , 2017, The journal of physical chemistry letters.

[18]  Hans Lischka,et al.  Newton‐X: a surface‐hopping program for nonadiabatic molecular dynamics , 2014 .

[19]  J Rydzewski,et al.  Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam. , 2016, Journal of chemical theory and computation.

[20]  Efthimios Kaxiras,et al.  Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. , 2008, The Journal of chemical physics.

[21]  Todd J. Martínez,et al.  Ab Initio Quantum Molecular Dynamics , 2002 .

[22]  D. Truhlar,et al.  Non-Born-Oppenheimer Liouville-von Neumann Dynamics. Evolution of a Subsystem Controlled by Linear and Population-Driven Decay of Mixing with Decoherent and Coherent Switching. , 2005, Journal of chemical theory and computation.

[23]  B. Durbeej On the primary event of phytochrome: quantum chemical comparison of photoreactions at C4, C10 and C15. , 2009, Physical chemistry chemical physics : PCCP.

[24]  Hai-bo Ma,et al.  Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method. , 2018, The journal of physical chemistry letters.

[25]  Matt Duckham,et al.  Trajectory similarity measures , 2015, SIGSPACIAL.

[26]  N. Doltsinis,et al.  Nonradiative decay of photoexcited methylated guanine , 2004 .

[27]  Haobin Wang,et al.  Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .

[28]  Peter Hildebrandt,et al.  Determination of the chromophore structures in the photoinduced reaction cycle of phytochrome. , 2004, Journal of the American Chemical Society.

[29]  W. Thiel,et al.  Chiral Pathways and Periodic Decay in cis-Azobenzene Photodynamics , 2011 .

[30]  Craig C. Martens,et al.  Semiclassical-limit molecular dynamics on multiple electronic surfaces , 1997 .

[31]  Barry R. Smith,et al.  Mixed state `on the fly' non-adiabatic dynamics: the role of the conical intersection topology , 1998 .

[32]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[33]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[34]  W. Thiel,et al.  How Photoisomerization Drives Peptide Folding and Unfolding: Insights from QM/MM and MM Dynamics Simulations. , 2016, Angewandte Chemie.

[35]  E Weinan,et al.  Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics , 2017, Physical review letters.

[36]  Joseph E. Subotnik Augmented Ehrenfest dynamics yields a rate for surface hopping. , 2010, The Journal of chemical physics.

[37]  Joshua B. Tenenbaum,et al.  Sparse multidimensional scaling using land-mark points , 2004 .

[38]  V. Buss,et al.  Bicycle-pedal isomerization in a rhodopsin chromophore model. , 2009, Journal of the American Chemical Society.

[39]  K. Takatsuka,et al.  Fundamental approaches to nonadiabaticity: toward a chemical theory beyond the Born-Oppenheimer paradigm. , 2012, Chemical reviews.

[40]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[41]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[42]  Binhai Zhu,et al.  Protein Structure-structure Alignment with Discrete FrÉchet Distance , 2008, J. Bioinform. Comput. Biol..

[43]  D. Yarkony,et al.  Conical Intersections: Electronic Structure, Dynamics and Spectroscopy , 2004 .

[44]  Basile F. E. Curchod,et al.  Ab Initio Nonadiabatic Quantum Molecular Dynamics. , 2018, Chemical reviews.

[45]  Cecilia Clementi,et al.  Polymer reversal rate calculated via locally scaled diffusion map. , 2011, The Journal of chemical physics.

[46]  J. Hughes,et al.  Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes , 2015, Front. Mol. Biosci..

[47]  Gareth W Richings,et al.  A Practical Diabatisation Scheme for Use with the Direct-Dynamics Variational Multi-Configuration Gaussian Method. , 2015, The journal of physical chemistry. A.

[48]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[49]  I. Tavernelli,et al.  Trajectory surface hopping within linear response time-dependent density-functional theory. , 2007, Physical review letters.

[50]  K. Ando,et al.  Mixed quantum-classical Liouville molecular dynamics without momentum jump , 2003 .

[51]  Deping Hu,et al.  Analysis of the Geometrical Evolution in On-the-Fly Surface-Hopping Nonadiabatic Dynamics with Machine Learning Dimensionality Reduction Approaches: Classical Multidimensional Scaling and Isometric Feature Mapping. , 2017, Journal of chemical theory and computation.

[52]  Le Yu,et al.  Trajectory-based nonadiabatic molecular dynamics without calculating nonadiabatic coupling in the avoided crossing case: trans↔cis photoisomerization in azobenzene. , 2014, Physical chemistry chemical physics : PCCP.

[53]  N. Ferré,et al.  The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution , 2006, Proceedings of the National Academy of Sciences.

[54]  N. Ferré,et al.  Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry , 2007, Proceedings of the National Academy of Sciences.

[55]  A. Akimov,et al.  Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. , 2013, Chemical reviews.

[56]  M. Barbatti,et al.  Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. , 2018, Chemical reviews.

[57]  Z. Lan,et al.  Tracking of the molecular motion in the primary event of photoinduced reactions of a phytochromobilin model. , 2013, The journal of physical chemistry. B.

[58]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[59]  S. D. Ivanov,et al.  Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates , 2015 .

[60]  L. Eriksson,et al.  Protein-bound chromophores astaxanthin and phytochromobilin: excited state quantum chemical studies. , 2006, Physical chemistry chemical physics : PCCP.

[61]  P. Hildebrandt,et al.  The chromophore structural changes during the photocycle of phytochrome: a combined resonance Raman and quantum chemical approach. , 2007, Accounts of chemical research.

[62]  W. Gärtner,et al.  The chromophore structures of the Pr States in plant and bacterial phytochromes. , 2007, Biophysical journal.

[63]  G. Granucci,et al.  Critical appraisal of the fewest switches algorithm for surface hopping. , 2007, The Journal of chemical physics.

[64]  I. Tavernelli,et al.  Photophysics of a copper phenanthroline elucidated by trajectory and wavepacket-based quantum dynamics: a synergetic approach. , 2017, Physical chemistry chemical physics : PCCP.

[65]  Walter Thiel,et al.  Comparison of algorithms for conical intersection optimisation using semiempirical methods , 2007 .

[66]  Donald G Truhlar,et al.  Algorithmic decoherence time for decay-of-mixing non-Born-Oppenheimer dynamics. , 2008, The Journal of chemical physics.

[67]  A. Akimov,et al.  Recent Progress in Surface Hopping: 2011-2015. , 2016, The journal of physical chemistry letters.

[68]  Walter Thiel,et al.  Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approach , 2003, J. Comput. Chem..

[69]  Michele Parrinello,et al.  Using sketch-map coordinates to analyze and bias molecular dynamics simulations , 2012, Proceedings of the National Academy of Sciences.

[70]  Sabine Timpf,et al.  Trajectory data mining: A review of methods and applications , 2016, J. Spatial Inf. Sci..

[71]  Gilles Louppe,et al.  Independent consultant , 2013 .

[72]  R. Mathies,et al.  Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues. , 2000, Biochemistry.

[73]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Mitrić,et al.  Nonadiabatic dynamics within the time dependent density functional theory: Ultrafast photodynamics in pyrazine , 2008 .

[75]  E. Santiso,et al.  Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt. , 2015, The Journal of chemical physics.

[76]  R. Mathies,et al.  Conical intersection dynamics of the primary photoisomerization event in vision , 2010, Nature.

[77]  Leonidas J. Guibas,et al.  New Similarity Measures between Polylines with Applications to Morphing and Polygon Sweeping , 2002, Discret. Comput. Geom..

[78]  Michael A. Robb,et al.  Nonadiabatic Dynamics: A Comparison of Surface Hopping Direct Dynamics with Quantum Wavepacket Calculations , 2003 .

[79]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[80]  Benjamin G. Levine,et al.  Isomerization through conical intersections. , 2007, Annual review of physical chemistry.

[81]  I. Tavernelli,et al.  Trajectory-based solution of the nonadiabatic quantum dynamics equations: an on-the-fly approach for molecular dynamics simulations. , 2011, Physical chemistry chemical physics : PCCP.

[82]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[83]  G. Seifert,et al.  Nonadiabatic dynamics within time-dependent density functional tight binding method. , 2009, The journal of physical chemistry. A.

[84]  G. Granucci,et al.  Direct semiclassical simulation of photochemical processes with semiempirical wave functions , 2001 .

[85]  T. Martínez Insights for light-driven molecular devices from ab initio multiple spawning excited-state dynamics of organic and biological chromophores. , 2006, Accounts of chemical research.

[86]  W. Thiel,et al.  Implementation of surface hopping molecular dynamics using semiempirical methods , 2008 .

[87]  L. Serrano-Andrés,et al.  Deciphering intrinsic deactivation/isomerization routes in a phytochrome chromophore model. , 2009, The journal of physical chemistry. B.

[88]  S. Tretiak,et al.  Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. , 2015, Chemical reviews.

[89]  Yu Xie,et al.  Nonadiabatic dynamics and photoisomerization of biomimetic photoswitches , 2015 .

[90]  Stephen J. Cotton,et al.  Symmetrical windowing for quantum states in quasi-classical trajectory simulations. , 2013, The journal of physical chemistry. A.

[91]  Jiahao Chen,et al.  Nonlinear dimensionality reduction for nonadiabatic dynamics: the influence of conical intersection topography on population transfer rates. , 2012, The Journal of chemical physics.

[92]  B. Schwartz,et al.  Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence. , 2005, The Journal of chemical physics.

[93]  Walter R. Duncan,et al.  Trajectory surface hopping in the time-dependent Kohn-Sham approach for electron-nuclear dynamics. , 2005, Physical review letters.

[94]  C. Clementi,et al.  Discovering mountain passes via torchlight: methods for the definition of reaction coordinates and pathways in complex macromolecular reactions. , 2013, Annual review of physical chemistry.

[95]  L. González,et al.  Trajectory Surface-Hopping Dynamics Including Intersystem Crossing in [Ru(bpy)3]2. , 2017, The journal of physical chemistry letters.

[96]  B. Trout,et al.  Insight into the molecular mechanism of water evaporation via the finite temperature string method. , 2013, The Journal of chemical physics.

[97]  Massimo Olivucci,et al.  Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. , 2017, Chemical reviews.

[98]  Walter Thiel,et al.  Orthogonalization corrections for semiempirical methods , 2000 .

[99]  H. Nakatsuji,et al.  Structure of phytochromobilin in the Pr and Pfr forms : SAC-CI theoretical study , 2005 .

[100]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[101]  Hans Lischka,et al.  The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems , 2007 .

[102]  Jie Zhao,et al.  A review of moving object trajectory clustering algorithms , 2016, Artificial Intelligence Review.

[103]  P. Marquetand,et al.  SHARC: ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. , 2011, Journal of chemical theory and computation.

[104]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[105]  Richard A. Friesner,et al.  Stationary phase surface hopping for nonadiabatic dynamics: Two-state systems , 1994 .

[106]  Avishek Kumar,et al.  Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways , 2015, PLoS Comput. Biol..

[107]  W. Kabsch A discussion of the solution for the best rotation to relate two sets of vectors , 1978 .

[108]  Mukund Balasubramanian,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[109]  P. Marquetand,et al.  Nonadiabatic dynamics: The SHARC approach , 2018, Wiley interdisciplinary reviews. Computational molecular science.

[110]  Jean-Michel Loubes,et al.  Review and Perspective for Distance-Based Clustering of Vehicle Trajectories , 2016, IEEE Transactions on Intelligent Transportation Systems.

[111]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[112]  D. Hu,et al.  Nonadiabatic dynamics simulation of keto isocytosine: a comparison of dynamical performance of different electronic-structure methods. , 2017, Physical chemistry chemical physics : PCCP.

[113]  Toru Shiozaki,et al.  On-the-Fly CASPT2 Surface-Hopping Dynamics. , 2017, Journal of chemical theory and computation.

[114]  B. Trout,et al.  A general method for molecular modeling of nucleation from the melt. , 2015, The Journal of chemical physics.

[115]  J. Tully Perspective: Nonadiabatic dynamics theory. , 2012, The Journal of chemical physics.

[116]  M. Frisch,et al.  Ab initio Ehrenfest dynamics. , 2005, The Journal of chemical physics.

[117]  Amir Nayyeri,et al.  Computing the Fréchet Distance Between Polygons with Holes , 2015, ICALP.

[118]  T. Martínez,et al.  Simulation of the photodynamics of azobenzene on its first excited state: comparison of full multiple spawning and surface hopping treatments. , 2005, The Journal of chemical physics.

[119]  M. Thoss,et al.  Semiclassical Description of Nonadiabatic Quantum Dynamics , 1997 .

[120]  Z. Lan,et al.  An On-the-Fly Surface-Hopping Program JADE for Nonadiabatic Molecular Dynamics of Polyatomic Systems: Implementation and Applications. , 2015, Journal of chemical theory and computation.

[121]  Regina de Vivie-Riedle,et al.  Two New Methods To Generate Internal Coordinates for Molecular Wave Packet Dynamics in Reduced Dimensions. , 2016, Journal of chemical theory and computation.

[122]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[123]  M. Maggioni,et al.  Determination of reaction coordinates via locally scaled diffusion map. , 2011, The Journal of chemical physics.

[124]  P. Hildebrandt,et al.  Protonation state and structural changes of the tetrapyrrole chromophore during the Pr --> Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study. , 1999, Biochemistry.

[125]  Guohua Tao Coherence-Controlled Nonadiabatic Dynamics via State-Space Decomposition: A Consistent Way To Incorporate Ehrenfest and Born-Oppenheimer-Like Treatments of Nuclear Motion. , 2016, The journal of physical chemistry letters.

[126]  M. Barbatti,et al.  Ultrafast two-step process in the non-adiabatic relaxation of the CH2 molecule , 2006 .

[127]  G. Ciccotti,et al.  Mixed quantum-classical dynamics , 1999 .

[128]  Hiroki Nakamura,et al.  New implementation of the trajectory surface hopping method with use of the Zhu-Nakamura theory , 2001 .

[129]  N. Doltsinis,et al.  Nonadiabatic Car-Parrinello molecular dynamics. , 2002, Physical review letters.

[130]  I. Horenko,et al.  Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase-space packets , 2002 .

[131]  L. Eriksson,et al.  Computational evidence in favor of a protonated chromophore in the photoactivation of phytochrome , 2005 .

[132]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.