PARAEXP: A Parallel Integrator for Linear Initial-Value Problems
暂无分享,去创建一个
[1] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[2] Vladimir Druskin,et al. Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..
[3] L. Knizhnerman. Calculation of functions of unsymmetric matrices using Arnoldi's method , 1991 .
[4] Ivan P. Gavrilyuk,et al. Exponentially Convergent Algorithms for the Operator Exponential with Applications to Inhomogeneous Problems in Banach Spaces , 2005, SIAM J. Numer. Anal..
[5] Lothar Reichel,et al. Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..
[6] Håvard Berland,et al. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET , 2005 .
[7] Ulrich Langer,et al. Domain decomposition methods in science and engineering XVII , 2008 .
[8] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[9] A. Talbot. The Accurate Numerical Inversion of Laplace Transforms , 1979 .
[10] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[11] Eter,et al. Faber and Newton Polynomial Integrators for Open-System Density Matrix Propagation , 1998 .
[12] Dario Bini,et al. Parallel Solution of Certain Toeplitz Linear Systems , 1984, SIAM J. Comput..
[13] L. Trefethen,et al. Talbot quadratures and rational approximations , 2006 .
[14] Marco Vianello,et al. Efficient Computation of the Exponential Operator for Large, Sparse, Symmetric Matrices , 2000 .
[15] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[16] Lehel Banjai,et al. Parallel multistep methods for linear evolution problems , 2012 .
[17] M. Eiermann,et al. Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .
[18] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[19] Michel Crouzeix,et al. Numerical range and functional calculus in Hilbert space , 2007 .
[20] Stefan Güttel,et al. Rational Krylov Methods for Operator Functions , 2010 .
[21] L. Trefethen,et al. Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .
[22] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[23] H. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .
[24] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[25] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[26] Ivan P. Gavrilyuk,et al. Exponentially Convergent Parallel Discretization Methods for the First Order Evolution Equations , 2001 .
[27] N. Higham. Functions Of Matrices , 2008 .
[28] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[29] Guillaume Bal,et al. On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations , 2005 .
[30] C. Loan. The Sensitivity of the Matrix Exponential , 1977 .
[31] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[32] Marlis Hochbruck,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..
[33] J. Cavendish. On the Norm of a Matrix Exponential , 1974 .
[34] Dongwoo Sheen,et al. A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..
[35] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[36] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[37] Chad Lieberman,et al. On Adaptive Choice of Shifts in Rational Krylov Subspace Reduction of Evolutionary Problems , 2010, SIAM J. Sci. Comput..
[38] Michael L. Minion,et al. A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD , 2010 .
[39] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[40] Kevin Burrage,et al. Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.
[41] A. G. Hutton,et al. THE NUMERICAL TREATMENT OF ADVECTION: A PERFORMANCE COMPARISON OF CURRENT METHODS , 1982 .
[42] Axel Ruhe. Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .
[43] Martin J. Gander,et al. On the Superlinear and Linear Convergence of the Parareal Algorithm , 2007, CSE 2007.
[44] Oliver G. Ernst,et al. A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..
[45] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[46] R. Varga,et al. Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .
[47] I. Moret,et al. THE COMPUTATION OF FUNCTIONS OF MATRICES BY TRUNCATED FABER SERIES , 2001 .
[48] L. Bergamaschi,et al. Interpolating discrete advection-diffusion propagators at Leja sequences , 2004 .
[49] Charbel Farhat,et al. Time‐parallel implicit integrators for the near‐real‐time prediction of linear structural dynamic responses , 2006 .
[50] Yousef Saad,et al. On the parallel solution of parabolic equations , 1989, ICS '89.
[51] Rolf Krause,et al. Explicit Parallel-in-time Integration of a Linear Acoustic-Advection System , 2012, ArXiv.
[52] Martin J. Gander,et al. Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .
[53] Cesar Palencia,et al. Fast Runge-Kutta approximation of inhomogeneous parabolic equations , 2005, Numerische Mathematik.
[54] Marco Vianello,et al. Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..
[55] Dongwoo Sheen,et al. A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .
[56] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[57] Martin J. Gander,et al. Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .