PARAEXP: A Parallel Integrator for Linear Initial-Value Problems

A novel parallel algorithm for the integration of linear initial-value problems is proposed. This algorithm is based on the simple observation that homogeneous problems can typically be integrated much faster than inhomogeneous problems. An overlapping time-domain decomposition is utilized to obtain decoupled inhomogeneous and homogeneous subproblems, and a near-optimal Krylov method is used for the fast exponential integration of the homogeneous subproblems. We present an error analysis and discuss the parallel scaling of our algorithm. The efficiency of this approach is demonstrated with numerical examples.

[1]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[2]  Vladimir Druskin,et al.  Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..

[3]  L. Knizhnerman Calculation of functions of unsymmetric matrices using Arnoldi's method , 1991 .

[4]  Ivan P. Gavrilyuk,et al.  Exponentially Convergent Algorithms for the Operator Exponential with Applications to Inhomogeneous Problems in Banach Spaces , 2005, SIAM J. Numer. Anal..

[5]  Lothar Reichel,et al.  Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..

[6]  Håvard Berland,et al.  NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET , 2005 .

[7]  Ulrich Langer,et al.  Domain decomposition methods in science and engineering XVII , 2008 .

[8]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[9]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[10]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[11]  Eter,et al.  Faber and Newton Polynomial Integrators for Open-System Density Matrix Propagation , 1998 .

[12]  Dario Bini,et al.  Parallel Solution of Certain Toeplitz Linear Systems , 1984, SIAM J. Comput..

[13]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[14]  Marco Vianello,et al.  Efficient Computation of the Exponential Operator for Large, Sparse, Symmetric Matrices , 2000 .

[15]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[16]  Lehel Banjai,et al.  Parallel multistep methods for linear evolution problems , 2012 .

[17]  M. Eiermann,et al.  Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .

[18]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[19]  Michel Crouzeix,et al.  Numerical range and functional calculus in Hilbert space , 2007 .

[20]  Stefan Güttel,et al.  Rational Krylov Methods for Operator Functions , 2010 .

[21]  L. Trefethen,et al.  Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .

[22]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[23]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[24]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[25]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[26]  Ivan P. Gavrilyuk,et al.  Exponentially Convergent Parallel Discretization Methods for the First Order Evolution Equations , 2001 .

[27]  N. Higham Functions Of Matrices , 2008 .

[28]  S. Güttel Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .

[29]  Guillaume Bal,et al.  On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations , 2005 .

[30]  C. Loan The Sensitivity of the Matrix Exponential , 1977 .

[31]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[32]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[33]  J. Cavendish On the Norm of a Matrix Exponential , 1974 .

[34]  Dongwoo Sheen,et al.  A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..

[35]  L. Knizhnerman,et al.  Two polynomial methods of calculating functions of symmetric matrices , 1991 .

[36]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[37]  Chad Lieberman,et al.  On Adaptive Choice of Shifts in Rational Krylov Subspace Reduction of Evolutionary Problems , 2010, SIAM J. Sci. Comput..

[38]  Michael L. Minion,et al.  A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD , 2010 .

[39]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[40]  Kevin Burrage,et al.  Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.

[41]  A. G. Hutton,et al.  THE NUMERICAL TREATMENT OF ADVECTION: A PERFORMANCE COMPARISON OF CURRENT METHODS , 1982 .

[42]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .

[43]  Martin J. Gander,et al.  On the Superlinear and Linear Convergence of the Parareal Algorithm , 2007, CSE 2007.

[44]  Oliver G. Ernst,et al.  A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..

[45]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[46]  R. Varga,et al.  Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .

[47]  I. Moret,et al.  THE COMPUTATION OF FUNCTIONS OF MATRICES BY TRUNCATED FABER SERIES , 2001 .

[48]  L. Bergamaschi,et al.  Interpolating discrete advection-diffusion propagators at Leja sequences , 2004 .

[49]  Charbel Farhat,et al.  Time‐parallel implicit integrators for the near‐real‐time prediction of linear structural dynamic responses , 2006 .

[50]  Yousef Saad,et al.  On the parallel solution of parabolic equations , 1989, ICS '89.

[51]  Rolf Krause,et al.  Explicit Parallel-in-time Integration of a Linear Acoustic-Advection System , 2012, ArXiv.

[52]  Martin J. Gander,et al.  Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .

[53]  Cesar Palencia,et al.  Fast Runge-Kutta approximation of inhomogeneous parabolic equations , 2005, Numerische Mathematik.

[54]  Marco Vianello,et al.  Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..

[55]  Dongwoo Sheen,et al.  A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .

[56]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[57]  Martin J. Gander,et al.  Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .