Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite

The variability and trend in global precipitable water vapor (PWV) from 1979 to 2014 are analyzed using the PWV data sets from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF), reanalysis of the National Centers for Environmental Prediction (NCEP), radiosonde, Global Positioning System (GPS), and microwave satellite observations. PWV data from the ECMWF and NCEP have been evaluated by radiosonde, GPS, and microwave satellite observations, showing that ECMWF has higher accuracy than NCEP. Over the oceans, ECMWF has a much better agreement with the microwave satellite than NCEP. An upward trend in the global PWV is evident in all the five PWV data sets over three study periods: 1979–2014, 1992–2014, and 2000–2014. Positive global PWV trends, defined as percentage normalized by annual average, of 0.61 ± 0.33% decade−1, 0.57 ± 0.28% decade−1, and 0.17 ± 0.35% decade−1, have been derived from the NCEP, radiosonde, and ECMWF, respectively, for the period 1979–2014. It is found that ECMWF overestimates the PWV over the ocean prior to 1992. Thus, two more periods, 1992–2014 and 2000–2014, are studied. Increasing PWV trends are observed from all the five data sets in the two periods: 1992–2014 and 2000–2014. The linear relationship between PWV and surface temperature is positive over most oceans and the polar region. Steep positive/negative regression slopes are generally found in regions where large regional moisture flux divergence/convergence occurs.

[1]  K. Trenberth,et al.  The changing character of precipitation , 2003 .

[2]  Zhizhao Liu,et al.  Analysis and modelling of water vapour and temperature changes in Hong Kong using a 40‐year radiosonde record: 1973–2012 , 2015 .

[3]  S. Bakan,et al.  Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data - HOAPS 3.2 - Monthly Means / 6-Hourly Composites , 2012 .

[4]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[5]  H. Bovensmann,et al.  Analysis of global water vapour trends from satellite measurements in the visible spectral range , 2007 .

[6]  J. Schulz,et al.  Comparison of decadal global water vapor changes derived from independent satellite time series , 2014 .

[7]  Kevin E. Trenberth,et al.  The Mass of the Atmosphere: A Constraint on Global Analyses , 2005 .

[8]  Jeff Knight,et al.  Decadal to multidecadal variability and the climate change background , 2007 .

[9]  W. Collins,et al.  The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation , 2001 .

[10]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[11]  Lixin Wu,et al.  Modes and Mechanisms of Global Water Vapor Variability over the Twentieth Century , 2013 .

[12]  R. Reynolds,et al.  Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions , 2006, Proceedings of the National Academy of Sciences.

[13]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[14]  T. Schöne,et al.  Status of the IGS-TIGA Tide Gauge Data Reprocessing at GFZ , 2015 .

[15]  Andrew E. Dessler,et al.  Trends in tropospheric humidity from reanalysis systems , 2010 .

[16]  Harald Kunstmann,et al.  The Hydrological Cycle in Three State-of-the-Art Reanalyses: Intercomparison and Performance Analysis , 2012 .

[17]  V. Ramaswamy,et al.  Analysis of moisture variability in the European Centre for Medium‐Range Weather Forecasts 15‐year reanalysis over the tropical oceans , 2002 .

[18]  Yunqiang Zhu,et al.  Trends and variability in atmospheric precipitable water over the Tibetan Plateau for 2000–2010 , 2015 .

[19]  Zhizhao Liu,et al.  A Comprehensive Evaluation and Analysis of the Performance of Multiple Tropospheric Models in China Region , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[20]  A. O'Neill,et al.  Evaluation of ozone and water vapor fields from the ECMWF reanalysis ERA-40 during 1991–1999 in comparison with UARS satellite and MOZAIC aircraft observations , 2006 .

[21]  Kevin E. Trenberth,et al.  Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses , 2011 .

[22]  W. Paul Menzel,et al.  Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation , 2000 .

[23]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[24]  Junhong Wang,et al.  Trends in Tropospheric Humidity from 1970 to 2008 over China from a Homogenized Radiosonde Dataset , 2012 .

[25]  Tobias Nilsson,et al.  Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data , 2008 .

[26]  D. Moorhead,et al.  Antarctic climate cooling and terrestrial ecosystem response , 2002, Nature.

[27]  Tammy M. Weckwerth,et al.  Tropospheric water vapor, convection, and climate , 2010 .

[28]  Makiko Sato,et al.  A closer look at United States and global surface temperature change , 2001 .

[29]  J. Schulz,et al.  The CM SAF SSM/I-based total column water vapour climate data record: methods and evaluation against re-analyses and satellite , 2012 .

[30]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[31]  J. Overland,et al.  An Arctic and antarctic perspective on recent climate change , 2007 .

[32]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[33]  Thomas M. Smith,et al.  A Global Merged Land–Air–Sea Surface Temperature Reconstruction Based on Historical Observations (1880–1997) , 2005 .

[34]  John E. Walsh,et al.  Intensified warming of the Arctic: Causes and impacts on middle latitudes , 2014 .

[35]  Markus Rothacher,et al.  The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences , 1999 .

[36]  Jan M. Johansson,et al.  Measuring regional atmospheric water vapor using the Swedish Permanent GPS Network , 1997 .

[37]  Gunnar Elgered,et al.  Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden , 2012, Journal of Geodesy.

[38]  M. Guglielmin,et al.  A permafrost warming in a cooling Antarctica? , 2012, Climatic Change.

[39]  Russell S. Vose,et al.  Overview of the Integrated Global Radiosonde Archive , 2006 .

[40]  W. Elliott,et al.  Radiosonde-Based Northern Hemisphere Tropospheric Water Vapor Trends , 2001 .

[41]  Alan Robock,et al.  Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. , 2002, Science.

[42]  W. Elliott,et al.  Tropospheric Water Vapor Climatology and Trends over North America: 1973–93 , 1996 .

[43]  D. Moorhead,et al.  Increasing risk of great floods in a changing climate , 2002, Nature.

[44]  Wei Li,et al.  A new global zenith tropospheric delay model IGGtrop for GNSS applications , 2012 .

[45]  G. Huffman,et al.  Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006) , 2008 .

[46]  M. Bouin,et al.  Multiscale analysis of precipitable water vapor over Africa from GPS data and ECMWF analyses , 2007 .

[47]  Ying-Hwa Kuo,et al.  Comparison of GPS radio occultation soundings with radiosondes , 2005 .

[48]  Kevin E. Trenberth,et al.  Trends and variability in column-integrated atmospheric water vapor , 2005 .

[49]  Bob E. Schutz,et al.  Monitoring precipitable water vapor in real-time using global navigation satellite systems , 2013, Journal of Geodesy.

[50]  Panmao Zhai,et al.  Atmospheric Water Vapor over China. , 1997 .

[51]  Richard B. Langley,et al.  Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI , 2001 .

[52]  Lei Shi,et al.  Upper-tropospheric moistening in response to anthropogenic warming , 2014, Proceedings of the National Academy of Sciences.

[53]  A. Dai Recent climatology, variability, and trends in global surface humidity , 2006 .

[54]  Axel Andersson,et al.  The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3 , 2010 .

[55]  Thomas C. Peterson,et al.  A new method for detecting undocumented discontinuities in climatological time series , 1995 .

[56]  S. Hagemann,et al.  Can climate trends be calculated from reanalysis data , 2004 .

[57]  Ed Hawkins,et al.  Making sense of the early-2000s warming slowdown , 2016 .

[58]  Peter Steigenberger,et al.  Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. , 2010 .

[59]  Steffen Beirle,et al.  Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS‐2 and their relation to near‐surface temperature , 2006 .

[60]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[61]  C. Deser,et al.  Local and remote controls on observed Arctic warming , 2012 .