Using explosive percolation in analysis of real-world networks.

We apply a variant of the explosive percolation procedure to large real-world networks and show with finite-size scaling that the university class, ordinary or explosive, of the resulting percolation transition depends on the structural properties of the network, as well as the number of unoccupied links considered for comparison in our procedure. We observe that in our social networks, the percolation clusters close to the critical point are related to the community structure. This relationship is further highlighted by applying the procedure to model networks with predefined communities.

[1]  S. Dongen Performance criteria for graph clustering and Markov cluster experiments , 2000 .

[2]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[3]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[4]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.