Structures of Two Repeats of Spectrin Suggest Models of Flexibility

Spectrin is a vital component of the cytoskeleton, conferring flexibility on cells and providing a scaffold for a variety of proteins. It is composed of tandem, antiparallel coiled-coil repeats. We report four related crystal structures at 1.45 A, 2.0 A, 3.1 A, and 4.0 A resolution of two connected repeats of chicken brain alpha-spectrin. In all of the structures, the linker region between adjacent units is alpha-helical without breaks, kinks, or obvious boundaries. Two features observed in the structures are (1) conformational rearrangement in one repeat, resulting in movement of the position of a loop, and (2) varying degrees of bending at the linker region. These features form the basis of two different models of flexibility: a conformational rearrangement and a bending model. These models provide novel atomic details of spectrin flexibility.

[1]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[2]  A. Mikkelsen,et al.  Some viscoelastic properties of human erythrocyte spectrin networks end-linked in vitro. , 1985, Biochimica et biophysica acta.

[3]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[4]  D. Speicher,et al.  Physical properties of a single-motif erythrocyte spectrin peptide: a highly stable independently folding unit. , 1997, Biochemistry.

[5]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[6]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[7]  R. M. Simmons,et al.  Elasticity and unfolding of single molecules of the giant muscle protein titin , 1997, Nature.

[8]  Wilfred D. Stein,et al.  Cell Shape: Determinants, Regulation, and Regulatory Role , 1989 .

[9]  R. Dubreuil Chapter 8 Molecular and Genetic Dissection of the Membrane Skeleton in Drosophila , 1996 .

[10]  D. Branton,et al.  The molecular basis of erythrocyte shape. , 1986, Science.

[11]  D. Patel,et al.  Solution structure of P22 transcriptional antitermination N peptide–box B RNA complex , 1998, Nature Structural Biology.

[12]  J. Winkelmann,et al.  Erythroid and nonerythroid spectrins , 1993 .

[13]  Marcel Bessis,et al.  Red Cell Shape , 1973, Springer Berlin Heidelberg.

[14]  R. Josephs,et al.  On the structure of erythrocyte spectrin in partially expanded membrane skeletons. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[16]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[17]  W. Linke,et al.  Towards a molecular understanding of the elasticity of titin. , 1996, Journal of molecular biology.

[18]  K. Beck,et al.  The spectrin-based membrane skeleton as a membrane protein-sorting machine. , 1996, The American journal of physiology.

[19]  M Nilges,et al.  Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil. , 1997, Journal of molecular biology.

[20]  R. Hjelm,et al.  Quantitative detection of rapid motions in spectrin by NMR. , 1989, Life sciences.

[21]  R. Waugh Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane. Implications about molecular events during membrane failure. , 1982, Biophysical journal.

[22]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[23]  M. Saraste,et al.  Invariant tryptophan at a shielded site promotes folding of the conformational unit of spectrin. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Craescu,et al.  Spectrin self-association site: characterization and study of beta-spectrin mutations associated with hereditary elliptocytosis. , 1998, The Biochemical journal.

[25]  T. Steck 8 – Red Cell Shape , 1989 .

[26]  P. Devarajan,et al.  Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes , 1996 .

[27]  R. Bloch,et al.  A model of spectrin as a concertina in the erythrocyte membrane skeleton. , 1992, Trends in cell biology.

[28]  D. Pantazatos,et al.  Site-directed Mutagenesis of Either the Highly Conserved Trp-22 or the Moderately Conserved Trp-95 to a Large, Hydrophobic Residue Reduces the Thermodynamic Stability of a Spectrin Repeating Unit* , 1997, The Journal of Biological Chemistry.

[29]  M. J. Clague,et al.  Transient dichroism studies of spectrin rotational diffusion in solution and bound to erythrocyte membranes. , 1990, Biochemistry.

[30]  E. Evans,et al.  Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. , 1994, Annual review of biophysics and biomolecular structure.

[31]  A. Mikkelsen,et al.  Human spectrin. V. A comparative electro-optic study of heterotetramers and heterodimers. , 1981, Biochimica et biophysica acta.

[32]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[33]  V. Bennett,et al.  Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. , 1990, Physiological reviews.

[34]  A. Lesk,et al.  Structural mechanisms for domain movements in proteins. , 1994, Biochemistry.

[35]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[36]  D. Speicher,et al.  Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. , 1992, The Journal of biological chemistry.

[37]  Wolfgang Kabsch,et al.  Evaluation of Single-Crystal X-ray Diffraction Data from a Position-Sensitive Detector , 1988 .

[38]  D. Branton,et al.  Phasing the conformational unit of spectrin. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Pekrun,et al.  Disorders of the red-cell membrane , 1990 .

[40]  D M Shotton,et al.  The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. , 1979, Journal of molecular biology.

[41]  J. Wade,et al.  Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane. , 1991, Cell motility and the cytoskeleton.

[42]  D A Parry,et al.  Analysis of the three-alpha-helix motif in the spectrin superfamily of proteins. , 1992, Biophysical journal.

[43]  Wolfgang Kabsch,et al.  Automatic indexing of rotation diffraction patterns , 1988 .

[44]  E. Pednault,et al.  Nucleic acid structure analysis. Mathematics for local Cartesian and helical structure parameters that are truly comparable between structures. , 1994, Journal of molecular biology.

[45]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[46]  D. Gilligan,et al.  The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. , 1993, Annual review of cell biology.

[47]  A. Pastore,et al.  The spectrin repeat folds into a three‐helix bundle in solution , 1996, FEBS Letters.

[48]  J. Black,et al.  Chapter 15 Dynamic Properties of the Lymphocyte Membrane-Cytoskeleton: Relationship to Lymphocyte Activation Status, Signal Transduction, and Protein Kinase C , 1996 .

[49]  W. Sawyer,et al.  Rotational dynamics of erythrocyte spectrin. , 1989, Biochimica et biophysica acta.

[50]  D. Speicher,et al.  Analysis of human red cell spectrin tetramer (head-to-head) assembly using complementary univalent peptides. , 1992, Biochemistry.

[51]  F. Studier,et al.  Use of T7 RNA polymerase to direct expression of cloned genes. , 1990, Methods in enzymology.

[52]  Paul Young,et al.  Molecular Basis for Cross-Linking of Actin Filaments: Structure of the α-Actinin Rod , 1999, Cell.

[53]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[54]  M. Rief,et al.  Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. , 1999, Journal of molecular biology.

[55]  Harold P. Erickson,et al.  2.0 Å Crystal Structure of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop and Synergy Region , 1996, Cell.

[56]  A. Mikkelsen,et al.  Human erythrocyte spectrin dimer intrinsic viscosity: temperature dependence and implications for the molecular basis of the erythrocyte membrane free energy. , 1985, Biochimica et biophysica acta.

[57]  D. Bacon,et al.  A fast algorithm for rendering space-filling molecule pictures , 1988 .

[58]  Christoph F. Schmidt,et al.  Conformation and elasticity of the isolated red blood cell membrane skeleton. , 1992, Biophysical journal.

[59]  D. Parry,et al.  Heptad breaks in α‐helical coiled coils: Stutters and stammers , 1996 .

[60]  Enrico A. Stura,et al.  Analytical and production seeding techniques , 1990 .

[61]  S V Evans,et al.  SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. , 1993, Journal of molecular graphics.

[62]  L. Derick,et al.  Visualization of the hexagonal lattice in the erythrocyte membrane skeleton , 1987, The Journal of cell biology.

[63]  L. Holm,et al.  Primary structure of the brain alpha-spectrin. , 1989 .

[64]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[65]  D. Branton,et al.  Crystal structure of the repetitive segments of spectrin. , 1993, Science.

[66]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[67]  T. Keiderling,et al.  Ionic strength effect on the thermal unfolding of α-spectrin peptides , 1998 .

[68]  D Eisenberg,et al.  Crystal structure of a synthetic triple-stranded alpha-helical bundle. , 1993, Science.

[69]  Vincent T. Marchesi,et al.  Erythrocyte spectrin is comprised of many homologous triple helical segments , 1984, Nature.

[70]  W T Tse,et al.  Red blood cell membrane disorders , 1999, British journal of haematology.

[71]  S. Marchesi Chapter 9 Mutant Cytoskeletal Proteins in Hemolytic Disease , 1991 .

[72]  D. Branton,et al.  The complete sequence of Drosophila alpha-spectrin: conservation of structural domains between alpha-spectrins and alpha-actinin , 1989, The Journal of cell biology.

[73]  R Josephs,et al.  Ultrastructure of the intact skeleton of the human erythrocyte membrane , 1986, The Journal of cell biology.

[74]  Paul Young,et al.  CRYSTAL STRUCTURE OF TWO CENTRAL SPECTRIN-LIKE REPEATS FROM ALPHA-ACTININ , 1999 .