Bayesian Tail Risk Interdependence Using Quantile Regression

Recent financial disasters emphasised the need to investigate the consequences associated with the tail co-movements among institutions; episodes of contagion are frequently observed and increase the probability of large losses affecting market participants’ risk capital. Commonly used risk management tools fail to account for potential spillover effects among institutions because they only provide individual risk assessment. We contribute to the analysis of the interdependence effects of extreme events, providing an estimation tool for evaluating the co-movement Value-at-Risk. In particular, our approach relies on a Bayesian quantile regression framework. We propose a Markov chain Monte Carlo algorithm, exploiting the representation of the Asymmetric Laplace distribution as a location-scale mixture of Normals. Moreover, since risk measures are usually evaluated on time series data and returns typically change over time, we extend the model to account for the dynamics of the tail behaviour. We apply our model to a sample of U.S. companies belonging to different sectors of the Standard and Poor’s Composite Index and we provide an evaluation of the marginal contribution to the overall risk of each individual institution.

[1]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[2]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[3]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[4]  Cheng-Few Lee,et al.  Alternative statistical distributions for estimating value-at-risk: theory and evidence , 2012 .

[5]  A. Kottas,et al.  Bayesian Semiparametric Modelling in Quantile Regression , 2009 .

[6]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[7]  Julia Schaumburg Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory , 2010 .

[8]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[9]  A. Gelfand,et al.  Bayesian Semiparametric Median Regression Modeling , 2001 .

[10]  A. Huang Value at risk estimation by quantile regression and kernel estimator , 2013 .

[11]  L. Pedersen,et al.  Measuring Systemic Risk , 2010 .

[12]  Nikolaus Hautsch,et al.  Financial Network Systemic Risk Contributions , 2013 .

[13]  V. Chernozhukov,et al.  Extremal Quantiles and Value-at-Risk , 2006 .

[14]  Nicholas G. Polson,et al.  MCMC Methods for Financial Econometrics , 2002 .

[15]  Mauro Bernardi,et al.  Risk measures for Skew Normal mixtures , 2013 .

[16]  R. Koenker,et al.  Regression Quantiles , 2007 .

[17]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[18]  M. Bernardi,et al.  Interconnected risk contributions: an heavy-tail approach to analyse US financial sectors , 2014, 1401.6408.

[19]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Cathy W. S. Chen,et al.  Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity , 2011, Computational Economics.

[21]  Siem Jan Koopman,et al.  A simple and efficient simulation smoother for state space time series analysis , 2002 .

[22]  Roland Füss,et al.  Spillover Effects among Financial Institutions: A State-Dependent Sensitivity Value-at-Risk (SDSVaR) Approach , 2015 .

[23]  Boris A. Skorohod,et al.  Diffuse Kalman Filter , 2017 .

[24]  R. Kohn,et al.  Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .

[25]  R. Ramamoorthi,et al.  Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density , 2013 .

[26]  Marc S. Paolella,et al.  Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .

[27]  Skew mixture models for loss distributions: a Bayesian approach , 2012 .

[28]  M. Bernardi,et al.  Multivariate Markov-Switching models and tail risk interdependence , 2013, 1312.6407.

[29]  Carlos Castro,et al.  Measuring and Testing for the Systemically Important Financial Institutions , 2012 .

[30]  W. Härdle,et al.  Quantile Regression in Risk Calibration , 2012 .

[31]  Yasuhiro Omori,et al.  Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline , 2012 .

[32]  Robert F. Engle,et al.  Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks † , 2012 .

[33]  Christian Gourieroux,et al.  Dynamic quantile models , 2008 .

[34]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[35]  A. Gelfand,et al.  Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process , 2012 .

[36]  Robert F. Engle,et al.  Volatility, Correlation and Tails for Systemic Risk Measurement , 2010 .

[37]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[38]  R. Engle,et al.  CAViaR , 1999 .

[39]  T. Lancaster,et al.  Bayesian Quantile Regression , 2005 .

[40]  Michael McAleer,et al.  Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range , 2011 .

[41]  Bertrand Clarke,et al.  Prediction in several conventional contexts , 2012 .

[42]  Cathy W. S. Chen,et al.  Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis , 2011 .

[43]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[44]  H. Kozumi,et al.  Gibbs sampling methods for Bayesian quantile regression , 2011 .

[45]  Rob J Hyndman,et al.  Australia Department of Econometrics and Business Statistics Local Linear Forecasts Using Cubic Smoothing Splines Local Linear Forecasts Using Cubic Smoothing Splines Local Linear Forecasts Using Cubic Smoothing Splines , 2022 .

[46]  James W. Taylor Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall , 2008 .

[47]  A. Lo,et al.  Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors , 2011 .

[48]  Peter F. CHRISTOFFERSENti EVALUATING INTERVAL FORECASTS , 2016 .

[49]  Andrew Harvey,et al.  Quantiles, expectiles and splines , 2009 .

[50]  K. Suwalski Comment to article , 2008 .

[51]  Roger Koenker,et al.  Quantile Autoregression , 2006 .

[52]  J. Kadane,et al.  Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach , 2012 .

[53]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[54]  N. Shephard,et al.  The simulation smoother for time series models , 1995 .

[55]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[56]  Giulio Girardi,et al.  Systemic Risk Measurement: Multivariate GARCH Estimation of CoVaR , 2012 .

[57]  Jurgen A. Doornik,et al.  Statistical algorithms for models in state space using SsfPack 2.2 , 1999 .

[58]  Samuel Kotz,et al.  The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance , 2001 .

[59]  Cathy W. S. Chen,et al.  Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets , 2011 .

[60]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[61]  Lixing Zhu,et al.  Composite Quantile Regression for the Single-Index Model , 2013 .

[62]  D. V. van Dyk,et al.  Partially Collapsed Gibbs Samplers: Illustrations and Applications , 2009 .