A Unified Processing Paradigm for Interactive Location-based Web Search

This paper studies the location-based web search and aims to build a unified processing paradigm for two purposes: (1) efficiently support each of the various types of location-based queries (kNN query, top-k spatial-textual query, etc.) on two major forms of geo-tagged data, i.e., spatial point data such as geo-tagged web documents, and spatial trajectory data such as a sequence of geo-tagged travel blogs by a user; (2) support interactive search to provide quick response for a query session, within which a user usually keeps refining her query by either issuing different query types or specifying different constraints (e.g., adding a keyword and/or location, changing the choice of k, etc.) until she finds the desired results. To achieve this goal, we first propose a general Top-k query called Monotone Aggregate Spatial Keyword query-MASK, which is able to cover most types of location-based web search. Next, we develop a unified indexing (called Textual-Grid-Point Inverted Index) and query processing paradigm (called ETAIL Algorithm) to answer a single MASK query efficiently. Furthermore, we extend ETAIL to provide interactive search for multiple queries within one query session, by exploiting the commonality of textual and/or spatial dimension among queries. Last, extensive experiments on four real datasets verify the robustness and efficiency of our approach.

[1]  Nicholas Jing Yuan,et al.  Towards efficient search for activity trajectories , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[2]  W. Bruce Croft,et al.  Efficient document retrieval in main memory , 2007, SIGIR.

[3]  Filip Radlinski,et al.  Inferring and using location metadata to personalize web search , 2011, SIGIR.

[4]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS.

[5]  Amanda Spink,et al.  From E-Sex to E-Commerce: Web Search Changes , 2002, Computer.

[6]  Ken C. K. Lee,et al.  IR-Tree: An Efficient Index for Geographic Document Search , 2011, IEEE Trans. Knowl. Data Eng..

[7]  W. Bruce Croft,et al.  A general language model for information retrieval , 1999, CIKM '99.

[8]  Kian-Lee Tan,et al.  Processing spatial keyword query as a top-k aggregation query , 2014, SIGIR.

[9]  Weiwei Sun,et al.  Voronoi-based aggregate nearest neighbor query processing in road networks , 2010, GIS '10.

[10]  Christian S. Jensen,et al.  Spatial Keyword Query Processing: An Experimental Evaluation , 2013, Proc. VLDB Endow..

[11]  Mohamed F. Mokbel,et al.  Location-based and preference-aware recommendation using sparse geo-social networking data , 2012, SIGSPATIAL/GIS.

[12]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[13]  Xing Xie,et al.  Hybrid index structures for location-based web search , 2005, CIKM '05.

[14]  Kyumin Lee,et al.  Toward traffic-driven location-based web search , 2011, CIKM '11.

[15]  Alistair Moffat,et al.  Inverted Index Compression Using Word-Aligned Binary Codes , 2004, Information Retrieval.

[16]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[17]  Anthony K. H. Tung,et al.  Scalable top-k spatial keyword search , 2013, EDBT '13.

[18]  Lin Kunhui ESR-Tree: a dynamic index for multi-dimensional objects , 2005 .

[19]  Jianjun Li,et al.  Efficient Group Top-k Spatial Keyword Query Processing , 2016, APWeb.

[20]  Xing Xie,et al.  Retrieving k-Nearest Neighboring Trajectories by a Set of Point Locations , 2011, SSTD.

[21]  Panos Kalnis,et al.  User oriented trajectory search for trip recommendation , 2012, EDBT '12.

[22]  Kyriakos Mouratidis,et al.  Aggregate nearest neighbor queries in spatial databases , 2005, TODS.

[23]  Torsten Suel,et al.  Text vs. space: efficient geo-search query processing , 2011, CIKM '11.

[24]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[25]  Dimitris Papadias,et al.  Aggregate nearest neighbor queries in road networks , 2005, IEEE Transactions on Knowledge and Data Engineering.

[26]  Kian-Lee Tan,et al.  Temporal Spatial-Keyword Top-k publish/subscribe , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[27]  Naphtali Rishe,et al.  Keyword Search on Spatial Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[28]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[29]  Yansheng Lu,et al.  Aggregate Nearest Keyword Search in Spatial Databases , 2010, 2010 12th International Asia-Pacific Web Conference.

[30]  Efthimis N. Efthimiadis,et al.  Studying query reformulation strategies in search logs , 2009, ASIST.

[31]  Dimitris Sacharidis,et al.  Efficient Point-Based Trajectory Search , 2015, SSTD.

[32]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[33]  J. Shane Culpepper,et al.  Answering Top-k Exemplar Trajectory Queries , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[34]  Cristian Rossi,et al.  Fast top-k preserving query processing using two-tier indexes , 2016, Inf. Process. Manag..

[35]  Andrei Z. Broder,et al.  Efficient query evaluation using a two-level retrieval process , 2003, CIKM '03.

[36]  Torsten Suel,et al.  Optimizing top-k document retrieval strategies for block-max indexes , 2013, WSDM.

[37]  Torsten Suel,et al.  Faster top-k document retrieval using block-max indexes , 2011, SIGIR.

[38]  Jiajie Xu,et al.  Interactive Top-k Spatial Keyword queries , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[39]  Hang Li,et al.  A unified and discriminative model for query refinement , 2008, SIGIR '08.

[40]  Chen Li,et al.  Processing Spatial-Keyword (SK) Queries in Geographic Information Retrieval (GIR) Systems , 2007, 19th International Conference on Scientific and Statistical Database Management (SSDBM 2007).

[41]  Anthony K. H. Tung,et al.  INSPIRE: A Framework for Incremental Spatial Prefix Query Relaxation , 2015, IEEE Transactions on Knowledge and Data Engineering.

[42]  Xing Xie,et al.  T-drive: driving directions based on taxi trajectories , 2010, GIS '10.

[43]  Christian S. Jensen,et al.  Efficient continuously moving top-k spatial keyword query processing , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[44]  Tok Wang Ling,et al.  Breaking out of the MisMatch trap , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[45]  Torsten Suel,et al.  Efficient query processing in geographic web search engines , 2006, SIGMOD Conference.

[46]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[47]  CongGao,et al.  Efficient retrieval of the top-k most relevant spatial web objects , 2009, VLDB 2009.

[48]  Heng Tao Shen,et al.  Searching trajectories by locations: an efficiency study , 2010, SIGMOD Conference.

[49]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.