Planning with Prioritized Goals

In this paper we present an approach to planning with prioritized goal states. To describe the preference ordering on goal states, we make use of ranked knowledge bases which induce a partial preference ordering on plans. We show how an optimal plan can be computed by assigning an integer value to each state in an appropriate manner. We also show how plan optimality can be tested in a similar fashion. Our implementation is based on Metric-FF, one of the fastest existing planning systems. A first empirical evaluation shows very promising results.

[1]  Hans Tompits,et al.  Domain-Specific Preferences for Causal Reasoning and Planning , 2004, ICAPS.

[2]  David E. Smith Choosing Objectives in OverSubscription Planning , 2004 .

[3]  Craig A. Knoblock,et al.  PDDL-the planning domain definition language , 1998 .

[4]  Didier Dubois,et al.  Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR2004), Whistler, Canada, June 2-5, 2004 , 2004, KR.

[5]  Moisés Goldszmidt,et al.  System-Z+: A Formalism for Reasoning with Variable-Strength Defaults , 1991, AAAI.

[6]  J. Ho,et al.  The Metric FF Planning System Translating Ignoring Delete Lists to Numeric State Variables , 2003 .

[7]  Derek Long,et al.  Plan Constraints and Preferences in PDDL3 , 2006 .

[8]  Subbarao Kambhampati,et al.  Effective Approaches for Partial Satisfaction (Over-Subscription) Planning , 2004, AAAI.

[9]  Subbarao Kambhampati,et al.  Over-Subscription in Planning: a Partial Satisfaction Problem , 2004 .

[10]  Gerhard Brewka,et al.  A rank based description language for qualitative preferences , 2004, NMR.

[11]  Wolfgang Faber,et al.  Answer Set Planning under Action Costs , 2002, JELIA.

[12]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[13]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[14]  Enrico Pontelli,et al.  Planning with Preferences Using Logic Programming , 2004, LPNMR.

[15]  Subbarao Kambhampati,et al.  Sapa: A Multi-objective Metric Temporal Planner , 2003, J. Artif. Intell. Res..

[16]  Edwin P. D. Pednault,et al.  ADL: Exploring the Middle Ground Between STRIPS and the Situation Calculus , 1989, KR.

[17]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[18]  Judea Pearl,et al.  System Z: a Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning^ , 1990 .

[19]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[20]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[21]  Ronen I. Brafman,et al.  Introducing Variable Importance Tradeoffs into CP-Nets , 2002, UAI.

[22]  Pierre-Yves Schobbens,et al.  Operators and Laws for Combining Preference Relations , 2002, J. Log. Comput..

[23]  Jérôme Lang,et al.  Expressive Power and Succinctness of Propositional Languages for Preference Representation , 2004, KR.

[24]  David E. Smith Choosing Objectives in Over-Subscription Planning , 2004, ICAPS.

[25]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[26]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[27]  M. Helmert,et al.  Principles of Knowledge Representation and Reasoning , 2008 .

[28]  Ronen I. Brafman,et al.  Planning with Goal Preferences and Constraints , 2005, ICAPS.

[29]  Subbarao Kambhampati,et al.  Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP , 2001, Artif. Intell..