Synthetic Gaia DR3 surveys from the FIRE cosmological simulations of Milky-Way-mass galaxies

[Abridged] With Gaia Data Release 2, the astronomical community enters a new era of multidimensional surveys of the Milky Way. This new phase-space view of our Galaxy demands new tools for comparing observations to simulations of Milky-Way-mass galaxies in a cosmological context, to test the physics of both dark matter and galaxy formation. We present ananke, a framework for generating synthetic phase-space surveys from high-resolution baryonic simulations, and use it to create a suite of synthetic surveys designed to resemble Gaia DR2 in data structure, magnitude limits, and observational errors. We use three cosmological simulations of Milky-Way-mass galaxies from the Latte suite of the Feedback In Realistic Environments (FIRE) project, which offer many advantages for generating synthetic stellar surveys: self-consistent clustering of star formation in dense molecular clouds, thin stellar and gaseous disks, cosmological accretion and enrichment histories, all in live cosmological halos with satellite dwarf galaxies and stellar halos. We select 3 solar viewpoints from each simulation for a total of 9 synthetic surveys. We generate synthetic stars assuming that each simulation's star particles represent single stellar populations, and distribute synthetic stars in position and velocity using superimposed kernels for different populations. At each viewpoint, we compute a self-consistent dust extinction map from the gas metallicity distribution in each simulation and apply a simple error model to produce a synthetic Gaia-like survey. This results in a catalog of synthetic stars, as if measured by Gaia, that includes both observational properties and a pointer to the generating star particle. We also provide the complete $z = 0$ snapshot--star, gas, and dark matter particles--for each simulated galaxy. We describe data access points, the data model, and plans for future upgrades.

[1]  P. Hopkins,et al.  Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxies , 2017, 1701.03792.

[2]  M. L. Pumo,et al.  Evolution of thermally pulsing asymptotic giant branch stars - I. The COLIBRI code , 2013, 1305.4485.

[3]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[4]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[5]  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[6]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[7]  P. Hopkins A simple phenomenological model for grain clustering in turbulence , 2013, 1307.7147.

[8]  M. Cropper,et al.  The stellar kinematics of corotating spiral arms in Gaia mock observations , 2015, 1501.01969.

[9]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[10]  A. Helmi,et al.  Galactic stellar haloes in the CDM model , 2009, 0910.3211.

[11]  A. Seth,et al.  A CLEAR AGE–VELOCITY DISPERSION CORRELATION IN ANDROMEDA’S STELLAR DISK , 2015, 1502.03820.

[12]  Berkeley,et al.  The structure and dynamical evolution of the stellar disc of a simulated Milky Way-mass galaxy , 2016, 1608.04133.

[13]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[14]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[15]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[16]  V. Springel,et al.  Aurigaia: mock Gaia DR2 stellar catalogues from the auriga cosmological simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  Simon D. M. White,et al.  Hierarchical galaxy formation : overmerging and the formation of an X-ray cluster , 1993 .

[18]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[19]  P. Hopkins,et al.  Metal flows of the circumgalactic medium, and the metal budget in galactic haloes , 2016, 1606.09252.

[20]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[21]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[22]  Caltech,et al.  A stellar feedback origin for neutral hydrogen in high-redshift quasar-mass haloes , 2016, 1601.07188.

[23]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[24]  H. Jeffreys,et al.  Theory of probability , 1896 .

[25]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[26]  S. B. Gudennavar,et al.  A COMPILATION OF INTERSTELLAR COLUMN DENSITIES , 2012 .

[27]  R. Starling,et al.  Calibration of X-ray absorption in our Galaxy , 2013, 1303.0843.

[28]  E. Grebel,et al.  GalMod: A Galactic Synthesis Population Model , 2018, The Astrophysical Journal.

[29]  Kathryn V. Johnston,et al.  GALAXIA: A CODE TO GENERATE A SYNTHETIC SURVEY OF THE MILKY WAY , 2011, 1101.3561.

[30]  D. Calzetti,et al.  Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS , 2018, 1802.06915.

[31]  P. Hopkins,et al.  Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction and metal diffusion on sub-L* galaxy formation , 2016, 1607.05274.

[32]  D. Watson The Galactic dust-to-metals ratio and metallicity using gamma-ray bursts , 2011, 1107.6031.

[33]  David W. Hogg,et al.  ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL , 2014, 1404.6534.

[34]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[35]  P. Hopkins,et al.  Gas kinematics, morphology and angular momentum in the FIRE simulations , 2017, 1705.10321.

[36]  M. Groenewegen The mid- and far-infrared colours of AGB and post-AGB stars , 2005, astro-ph/0511475.

[37]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[38]  Chinese Academy of Sciences,et al.  Creating mock catalogues of stellar haloes from cosmological simulations , 2014, 1406.2320.

[39]  P. Marigo Chemical Yields from Low- and Intermediate-Mass Stars , 1999, astro-ph/9912341.

[40]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[41]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[42]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[43]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[44]  R. Drimmel,et al.  A three-dimensional Galactic extinction model , 2003, astro-ph/0307273.

[45]  L. Girardi,et al.  A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE , 2017, 1701.08510.

[46]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[47]  E. Slezak,et al.  Gaia Universe model snapshot - A statistical analysis of the expected contents of the Gaia catalogue , 2012, 1202.0132.

[48]  P. Hopkins,et al.  The meaning and consequences of star formation criteria in galaxy models with resolved stellar feedback , 2013, 1303.0285.

[49]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[50]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[51]  P. Hopkins,et al.  Modelling chemical abundance distributions for dwarf galaxies in the Local Group: The impact of turbulent metal diffusion , 2017, 1710.06533.

[52]  M. Steinmetz,et al.  Multidimensional density estimation and phase-space structure of dark matter haloes , 2005, astro-ph/0507550.

[53]  P. Kalberla,et al.  Global properties of the H I distribution in the outer Milky Way - Planar and extra-planar gas , 2008, 0804.4831.

[54]  K. Johnston,et al.  A GROUP FINDING ALGORITHM FOR MULTIDIMENSIONAL DATA SETS , 2009 .

[55]  J. Bullock,et al.  How to zoom: bias, contamination and Lagrange volumes in multimass cosmological simulations , 2013, 1305.6923.

[56]  H. Rix,et al.  A Gaia DR2 Mock Stellar Catalog , 2018, 1804.01427.

[57]  R. Izzard,et al.  A new synthetic model for asymptotic giant branch stars , 2004 .

[58]  P. Hopkins,et al.  What FIREs up star formation: The emergence of the Kennicutt-Schmidt law from feedback , 2017, 1701.01788.

[59]  R. Finger,et al.  Dust–Gas Scaling Relations and OH Abundance in the Galactic ISM , 2018, The Astrophysical Journal.

[60]  P. Hopkins,et al.  Gusty, gaseous flows of FIRE: Galactic winds in cosmological simulations with explicit stellar feedback , 2015, 1501.03155.

[61]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[62]  M. Groenewegen,et al.  New theoretical yields of intermediate mass stars , 1996, astro-ph/9610030.

[63]  Caltech,et al.  Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history , 2014, 1409.1919.

[64]  P. Hopkins,et al.  Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo , 2017, 1704.05463.

[65]  P. Hopkins,et al.  The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[66]  E. Hatziminaoglou,et al.  Star counts in the Galaxy - Simulating from very deep to very shallow photometric surveys with the TRILEGAL code , 2005, astro-ph/0504047.

[67]  U. Munari,et al.  The radial velocity experiment (RAVE): First data release , 2006 .

[68]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[69]  M. Krumholz,et al.  A COMPARISON OF METHODS FOR DETERMINING THE MOLECULAR CONTENT OF MODEL GALAXIES , 2010, 1011.4065.

[70]  P. Hopkins,et al.  RECONCILING DWARF GALAXIES WITH ΛCDM COSMOLOGY: SIMULATING A REALISTIC POPULATION OF SATELLITES AROUND A MILKY WAY–MASS GALAXY , 2016, 1602.05957.

[71]  P. Hopkins,et al.  The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations , 2016, 1610.08523.

[72]  P. Hopkins,et al.  Reconciling Observed and Simulated Stellar Halo Masses , 2017, The Astrophysical Journal.

[73]  Kathryn V. Johnston,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .

[74]  C. Leitherer,et al.  THE EFFECTS OF STELLAR ROTATION. II. A COMPREHENSIVE SET OF STARBURST99 MODELS , 2014, 1403.5444.

[75]  J. Brinchmann,et al.  UNVEILING THE MILKY WAY: A NEW TECHNIQUE FOR DETERMINING THE OPTICAL COLOR AND LUMINOSITY OF OUR GALAXY , 2015, 1508.04446.