Solving Polynomials with Small Leading Coefficients
暂无分享,去创建一个
[1] Scott A. Mitchell,et al. Quality Mesh Generation in Higher Dimensions , 2000, SIAM J. Comput..
[2] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .
[3] P. Dooren,et al. The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .
[4] Rida T. Farouki,et al. On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..
[5] A. Edelman,et al. Polynomial roots from companion matrix eigenvalues , 1995 .
[6] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[7] Frann Coise Tisseur. Backward Stability of the Qr Algorithm , 1996 .
[8] Michael T. Heath,et al. Scientific Computing: An Introductory Survey , 1996 .
[9] C. Reinsch,et al. Balancing a matrix for calculation of eigenvalues and eigenvectors , 1969 .
[10] L. Trefethen,et al. Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .
[11] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[12] B. S. Garbow,et al. Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.
[13] Fujio Yamaguchi,et al. Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.