FANTOM: Functional and taxonomic analysis of metagenomes

BackgroundInterpretation of quantitative metagenomics data is important for our understanding of ecosystem functioning and assessing differences between various environmental samples. There is a need for an easy to use tool to explore the often complex metagenomics data in taxonomic and functional context.ResultsHere we introduce FANTOM, a tool that allows for exploratory and comparative analysis of metagenomics abundance data integrated with metadata information and biological databases. Importantly, FANTOM can make use of any hierarchical database and it comes supplied with NCBI taxonomic hierarchies as well as KEGG Orthology, COG, PFAM and TIGRFAM databases.ConclusionsThe software is implemented in Python, is platform independent, and is available at http://www.sysbio.se/Fantom

[1]  P. Dixon VEGAN, a package of R functions for community ecology , 2003 .

[2]  I-Min A. Chen,et al.  IMG/M: a data management and analysis system for metagenomes , 2007, Nucleic Acids Res..

[3]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[4]  BMC Bioinformatics , 2005 .

[5]  Folker Meyer,et al.  37. The Metagenomics RAST Server: A Public Resource for the Automatic Phylogenetic and Functional Analysis of Metagenomes , 2011 .

[6]  J. Doré,et al.  Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients , 2008, Proceedings of the National Academy of Sciences.

[7]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[8]  Robert G. Beiko,et al.  Identifying biologically relevant differences between metagenomic communities , 2010, Bioinform..

[9]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[10]  Patrick J. Biggs,et al.  SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data , 2010, BMC Bioinformatics.

[11]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[12]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[13]  Campbell O. Webb,et al.  Picante: R tools for integrating phylogenies and ecology , 2010, Bioinform..

[14]  Peer Bork,et al.  SmashCommunity: a metagenomic annotation and analysis tool , 2010, Bioinform..

[15]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[16]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[17]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[18]  Pelin Yilmaz,et al.  The genomic standards consortium: bringing standards to life for microbial ecology , 2011, The ISME Journal.

[19]  S. Kravitz,et al.  CAMERA: A Community Resource for Metagenomics , 2007, PLoS biology.

[20]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[21]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[22]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[23]  F. Bäckhed,et al.  Obesity alters gut microbial ecology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[25]  Heng Li,et al.  A survey of sequence alignment algorithms for next-generation sequencing , 2010, Briefings Bioinform..

[26]  A. Schwiertz,et al.  Microbiota and SCFA in Lean and Overweight Healthy Subjects , 2010, Obesity.

[27]  H. Flint,et al.  Human colonic microbiota associated with diet, obesity and weight loss , 2008, International Journal of Obesity.

[28]  Emily S. Charlson,et al.  Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications , 2011, Nature Biotechnology.

[29]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..