Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b

Context. The detection of reflected light from an exoplanet is a difficult technical challenge at optical wavelengths. Even though this signal is expected to replicate the stellar signal, not only is it several orders of magnitude fainter, but it is also hidden among the stellar noise. Aims. We apply a variant of the cross-correlation technique to HARPS observations of 51 Peg to detect the reflected signal from planet 51 Peg b. Methods. Our method makes use of the cross-correlation function (CCF) of a binary mask with high-resolution spectra to amplify the minute planetary signal that is present in the spectra by a factor proportional to the number of spectral lines when performing the cross correlation. The resulting cross-correlation functions are then normalized by a stellar template to remove the stellar signal. Carefully selected sections of the resulting normalized CCFs are stacked to increase the planetary signal further. The recovered signal allows probing several of the planetary properties, including its real mass and albedo. Results. We detect evidence for the reflected signal from planet 51 Peg b at a significance of 3 sigma(noise). The detection of the signal permits us to infer a real mass of 0.46(-0.01)(+0.06) M-Jup (assuming a stellar mass of 1.04 M-Sun) for the planet and an orbital inclination of 80(-19)(+10) degrees. The analysis of the data also allows us to infer a tentative value for the (radius-dependent) geometric albedo of the planet. The results suggest that 51Peg b may be an inflated hot Jupiter with a high albedo (e.g., an albedo of 0.5 yields a radius of 1.9 +/- 0.3 R-Jup for a signal amplitude of 6.0 +/- 0.4 x 10(-5)). Conclusions. We confirm that the method we perfected can be used to retrieve an exoplanet's reflected signal, even with current observing facilities. The advent of next generation of instruments (e.g. VLT-ESO /ESPRESSO) and observing facilities (e.g. a new generation of ELT telescopes) will yield new opportunities for this type of technique to probe deeper into exoplanets and their atmospheres.

[1]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample , 2011, 1111.5019.

[2]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[3]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[4]  Joanna K. Barstow,et al.  CLOUDS ON THE HOT JUPITER HD189733b: CONSTRAINTS FROM THE REFLECTION SPECTRUM , 2014, 1403.6664.

[5]  Christophe Lovis,et al.  Spectroscopic direct detection of reflected light from extrasolar planets , 2013, 1308.6516.

[6]  Sara Seager,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[7]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[8]  D. Queloz,et al.  The ELODIE survey for northern extra-solar planets. III. Three planetary candidates detected with ELODIE , 2003, astro-ph/0310261.

[9]  Kaspar von Braun,et al.  DIRECTLY DETERMINED LINEAR RADII AND EFFECTIVE TEMPERATURES OF EXOPLANET HOST STARS , 2009, 0901.1206.

[10]  Emily Rauscher,et al.  CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT , 2011, 1109.2270.

[11]  M. Tsantaki,et al.  SWEET-Cat: A catalogue of parameters for Stars With ExoplanETs - I. New atmospheric parameters and masses for 48 stars with planets , 2013, 1307.0354.

[12]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[13]  A. Lagrange Direct imaging of exoplanets , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[15]  Howard Isaacson,et al.  Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone , 2013, Science.

[16]  B. Oppenheimer,et al.  Direct Imaging of Exoplanets , 2010 .

[17]  Bernhard R. Brandl,et al.  Fast spin of the young extrasolar planet β Pictoris b , 2014, Nature.

[18]  S. Baliunas,et al.  Rotation periods of exoplanet host stars , 2010, 1006.4121.

[19]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[20]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[21]  B. Demory THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS , 2014, 1405.3798.

[22]  A. Burrows,et al.  Bright optical day-side emission from extrasolar planet CoRoT-2b , 2010 .

[23]  Sara Seager,et al.  Exoplanet Atmospheres: Physical Processes , 2010 .

[24]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[25]  Bernhard Brandl,et al.  The fast spin-rotation of a young extra-solar planet , 2014 .

[26]  J. Fortney,et al.  The Interior Structure, Composition, and Evolution of Giant Planets , 2009, 0912.0533.

[27]  N. Santos,et al.  Impact of stellar companions on precise radial velocities , 2012, 1212.2848.

[28]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[29]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets VII - Two short-period Saturnian companions to HD 108147 and HD 168746 , 2002, astro-ph/0202457.

[30]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[31]  D. James,et al.  A search for starlight reflected from HD 75289b , 2003, astro-ph/0310489.

[32]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[33]  Alain Lecavelier des Etangs,et al.  THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS , 2013, 1307.3239.

[34]  Pierre Le Sidaner,et al.  Defining and cataloging exoplanets: the exoplanet.eu database , 2011, 1106.0586.

[35]  David Charbonneau,et al.  THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b , 2009, 0908.1977.

[36]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[37]  V. Sobolev Chapter 11 – SPHERICAL ATMOSPHERES , 1975 .

[38]  Ignasi Ribas,et al.  WEIGHING THE NON-TRANSITING HOT JUPITER τ Boo b , 2012, 1206.6197.

[39]  K. Horne,et al.  A search for starlight reflected from ν And's innermost planet , 2001 .

[40]  R. J. de Kok,et al.  Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm , 2013, 1307.1133.

[41]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[42]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[43]  T. Guillot,et al.  The secondary eclipse of the transiting exoplanet CoRoT-2b , 2009, 0906.2814.

[44]  T. Barman,et al.  The physical properties of extra-solar planets , 2010, 1001.3577.

[45]  A. Santerne,et al.  Impact of occultations of stellar active regions on transmission spectra: Can occultation of a plage mimic the signature of a blue sky? , 2014, 1407.2066.

[46]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[47]  R. J. de Kok,et al.  DETECTION OF MOLECULAR ABSORPTION IN THE DAYSIDE OF EXOPLANET 51 PEGASI b? , 2013, 1302.6242.

[48]  T. Henning,et al.  τ Boötis b: Hunting for reflected starlight , 2010, 1002.1638.

[49]  Drake Deming,et al.  H2O ABUNDANCES IN THE ATMOSPHERES OF THREE HOT JUPITERS , 2014, 1407.6054.

[50]  R. Jayawardhana,et al.  An Adaptive Optics Search for Companions to Stars with Planets , 2001, astro-ph/0110550.

[51]  David Charbonneau,et al.  An Upper Limit on the Reflected Light from the Planet Orbiting the Star τ Bootis , 1999, astro-ph/9907195.

[52]  M. López-Morales,et al.  The return of the mummy: Evidence for starlight reflected from the massive hot Jupiter τ Boo b? , 2013 .

[53]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[54]  D. Ciardi,et al.  PLANETARY PHASE VARIATIONS OF THE 55 CANCRI SYSTEM , 2011, 1105.1716.

[55]  R. J. de Kok,et al.  Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b , 2014, 1404.3769.

[56]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[57]  Simon Albrecht,et al.  Identifying new opportunities for exoplanet characterisation at high spectral resolution , 2013, 1312.3745.

[58]  Keith Horne,et al.  Probable detection of starlight reflected from the giant planet orbiting τ Boötis , 1999, Nature.

[59]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[60]  M. R. Haas,et al.  DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER , 2011, 1109.1611.

[61]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[62]  European Southern Observatory,et al.  The CORALIE survey for southern extra-solar planets - IX. A 1.3-day period brown dwarf disguised as a planet , 2002 .