Nanostructuring of hybrid silicas through a self-recognition process.

The hydrolysis and condensation of a silylated derivative of ureidopyrimidinone led to nanostructured hybrid silica, such as that depicted, as clearly shown by powder XRD studies. The nanostructuring was directly related to molecular recognition through hydrogen bonding. By combining FTIR, solution and solid-state NMR spectroscopic data, the transcription of the hydrogen-bonding networks from the precursor to the final product was clearly evidenced.

[1]  V. Bermudez,et al.  Photoluminescence of Eu(III)-doped lamellar bridged silsesquioxanes self-templated through a hydrogen bonding array , 2008 .

[2]  G. Triani,et al.  Synthesis and characterisation of carboxylate-terminated silica nanohybrid powders and thin films , 2008 .

[3]  R. Corriu,et al.  From simple molecules to highly functionalised lamellar materials , 2008 .

[4]  M. Jaroniec,et al.  Preface to the Special Issue: Templated Materials , 2008 .

[5]  G. Creff,et al.  Organosilicas based on purine–pyrimidinebase pair assemblies: a solid state NMR point of view , 2008 .

[6]  M. Barboiu,et al.  Amplification and transcription of the dynamic supramolecular chirality of the guanine quadruplex. , 2007, Angewandte Chemie.

[7]  S. C. Nunes,et al.  Nanoscopic Photoluminescence Memory as a Fingerprint of Complexity in Self‐Assembled Alkyl/Siloxane Hybrids , 2007 .

[8]  Xavier Elias,et al.  Hybrid-bridged silsesquioxane as recyclable metathesis catalyst derived from a bis-silylated hoveyda-type ligand , 2006 .

[9]  J. Parneix,et al.  Nanostructuration of phenylenevinylenediimide-bridged silsesquioxane: from electroluminescent molecular J-aggregates to photoresponsive polymeric H-aggregates. , 2006, Journal of the American Chemical Society.

[10]  K. Kuroda,et al.  Designed synthesis of nanostructured siloxane-organic hybrids from amphiphilic silicon-based precursors. , 2006, Chemical record.

[11]  J. Moreau,et al.  Structuring of bridged silsesquioxanes via cooperative weak interactions: H-bonding of urea groups and hydrophobic interactions of long alkylene chains , 2005 .

[12]  C. Brinker,et al.  Polydiacetylene/silica nanocomposites with tunable mesostructure and thermochromatism from diacetylenic assembling molecules. , 2005, Journal of the American Chemical Society.

[13]  J. Alauzun,et al.  CO2 as a supramolecular assembly agent: a route for lamellar materials with a high content of amine groups. , 2005, Journal of the American Chemical Society.

[14]  M. Buggy,et al.  Solid‐state NMR study of ureidopyrimidinone model compounds , 2005, Magnetic resonance in chemistry : MRC.

[15]  G. Arrachart,et al.  Nanostructuring organo-silicas: combination of intermolecular interactions and molecular recognition properties to generate self-assembled hybrids with phenylene or adenine⋯thymine bridging units , 2005 .

[16]  L. Vellutini,et al.  Lamellar bridged silsesquioxanes: self-assembly through a combination of hydrogen bonding and hydrophobic interactions. , 2005, Chemistry.

[17]  J. Alauzun,et al.  Hydrophilic conditions: a new way for self-assembly of hybrid silica containing long alkylene chains , 2005 .

[18]  J. Moreau,et al.  Facile Cleavage of Si−C Bonds during the Sol-Gel Hydrolysis of Aminomethyltrialkoxysilanes − A New Method for the Methylation of Primary Amines , 2004 .

[19]  Joong Tark Han,et al.  Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding. , 2004, Journal of the American Chemical Society.

[20]  J. Moreau,et al.  Chiral hybrid silica: sol–gel heterogenisation of trans-(1R,2R)-diaminocyclohexane ligands for the rhodium catalysed enantioselective reduction of acetophenone , 2004 .

[21]  J. Bantignies,et al.  A better understanding of the self-structuration of bridged silsesquioxanes. , 2004, Angewandte Chemie.

[22]  J. Lère-Porte,et al.  Vapour diffusion hydrolysis of a self-assembled silylated organogel, the OG-HG transcription process: a new way to cast and handle fluorescent silsesquioxane. , 2003, Chemical communications.

[23]  D. Avnir,et al.  One-pot sequences of reactions with sol-gel entrapped opposing reagents. Oxidations and catalytic reductions , 2003 .

[24]  C. Brinker,et al.  Self-directed assembly of photoactive hybrid silicates derived from an azobenzene-bridged silsesquioxane. , 2002, Journal of the American Chemical Society.

[25]  H. Spiess,et al.  Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. , 2001, Chemical reviews.

[26]  D. Avnir,et al.  Acids and Bases in One Pot while Avoiding Their Mutual Destruction , 2001 .

[27]  R. Sijbesma,et al.  Inverse detection and heteronuclear editing in 1H-15N correlation and 1H-1H double-quantum NMR spectroscopy in the solid state under fast MAS. , 2001, Journal of magnetic resonance.

[28]  J. Moreau,et al.  New hybrid silica based materials for the solid–liquid extraction of actinides , 1999 .

[29]  C. Soles,et al.  Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization , 1998 .

[30]  E. W. Meijer,et al.  STRONG DIMERIZATION OF UREIDOPYRIMIDONES VIA QUADRUPLE HYDROGEN BONDING , 1998 .

[31]  E. W. Meijer,et al.  Self‐Complementarity Achieved through Quadruple Hydrogen Bonding , 1998 .

[32]  Anthony L. Spek,et al.  Durch vier Wasserstoffbrückenbindungen vermittelte Selbstkomplementarität , 1998 .

[33]  J. Moreau,et al.  Chemistry of hybrid organic-inorganic. Access to silica materials through chemical selectivity , 1997 .

[34]  D. Demco,et al.  Broadband multiple-quantum NMR spectroscopy , 1996 .

[35]  J. Moreau,et al.  Hybrid Silica Gels Containing 1,3-Butadiyne Bridging Units. Thermal and Chemical Reactivity of the Organic Fragment , 1996 .

[36]  J. Moreau,et al.  New mixed organic-inorganic polymers: hydrolysis and polycondensation of bis(trimethoxysilyl)organometallic precursors , 1992 .

[37]  K. Shea,et al.  Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks , 1992 .