Solid-state lasers for coherent communication and remote sensing

Semiconductor-diode laser-pumped solid-state lasers have properties that are superior to other lasers for the applications of coherent communication and remote sensing. These properties include efficiency, reliability, stability, and capability to be scaled to higher powers. We have demonstrated that an optical phase-locked loop can be used to lock the frequency of two diode-pumped 1.06 micron Nd:YAG lasers to levels required for coherent communication. Monolithic nonplanar ring oscillators constructed from solid pieces of the laser material provide better than 10 kHz frequency stability over 0.1 sec intervals. We have used active feedback stabilization of the cavity length of these lasers to demonstrate 0.3 Hz frequency stabilization relative to a reference cavity. We have performed experiments and analysis to show that optical parametric oscillators (OPO's) reproduce the frequency stability of the pump laser in outputs that can be tuned to arbitrary wavelengths. Another measurement performed in this program has demonstrated the sub-shot-noise character of correlations of the fluctuations in the twin output of OPO's. Measurements of nonlinear optical coefficients by phase-matched second harmonic generation are helping to resolve inconsistency in these important parameters.

[1]  W. R. Bosenberg,et al.  Optical parametric oscillators , 1992 .

[2]  Robert L. Byer,et al.  Coherence properties of a doubly resonant monolithic optical parametric oscillator , 1990 .

[3]  R. Byer,et al.  Visible BaB2O4 optical parametric oscillator pumped at 355 nm by a single‐axial‐mode pulsed source , 1988 .

[4]  Robert L. Byer,et al.  Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO/sub 3/ external resonant cavities , 1988 .

[5]  A. Piskarskas,et al.  Continuous parametric generation of picosecond light pulses , 1988 .

[6]  David Eimerl,et al.  Optical, mechanical, and thermal properties of barium borate , 1987 .

[7]  R L Byer,et al.  Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO(4). , 1987, Applied optics.

[8]  Robert L. Byer,et al.  Recent Developments In Barium Borate , 1987, Optics & Photonics.

[9]  Robert L. Byer,et al.  Fifty Percent Conversion Efficiency Second Harmonic Generation In Magnesium Oxide Doped Lithium Niobate , 1987, Optics & Photonics.

[10]  D. Eimerl,et al.  Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs , 1987 .

[11]  K. Kato Second-harmonic generation to 2048 Å in Β-Ba 2 O 4 , 1986 .

[12]  D. A. Bryan,et al.  Magnesium-doped lithium niobate for higher optical power applications , 1985 .

[13]  R. Byer,et al.  Monolithic, unidirectional single-mode Nd:YAG ring laser. , 1985, Optics letters.

[14]  M. Lawrence,et al.  A temperature-dependent dispersion equation for congruently grown lithium niobate , 1984 .

[15]  Yaochun Shen Principles of nonlinear optics , 1984 .

[16]  R. S. Craxton,et al.  High efficiency frequency tripling schemes for high-power Nd: Glass lasers , 1981 .

[17]  D. F. Nelson,et al.  Light Scattering in Crystals with Surface Corrections , 1976 .

[18]  T. E. Gier,et al.  KxRb1−xTiOPO4: A new nonlinear optical material , 1976 .

[19]  Robert L. Byer,et al.  Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals , 1976 .

[20]  R. P. Edwin,et al.  Refractive indices of lithium niobate , 1976 .

[21]  D. F. Nelson,et al.  Refractive indices of congruently melting lithium niobate , 1974 .

[22]  R. Smith A study of factors affecting the performance of continuously pumped doubly resonant optical parametric oscillator , 1973 .

[23]  J. Falk,et al.  Instabilities in the doubly resonant parametric oscillator: A theoretical analysis , 1971 .

[24]  F. S. Welsh,et al.  Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate , 1971 .

[25]  R. Byer,et al.  Growth of High‐Quality LiNbO3 Crystals from the Congruent Melt , 1970 .

[26]  A. Campillo,et al.  SPONTANEOUS PARAMETRIC SCATTERING OF LIGHT IN LiIO3 , 1970 .

[27]  Stephen E. Harris,et al.  Tunable optical parametric oscillators , 1969 .

[28]  R. T. Smith,et al.  Thermal Expansion of Lithium Tantalate and Lithium Niobate Single Crystals , 1969 .

[29]  J. Bjorkholm Analysis of the doubly resonant optical parametric oscillator without power-dependent reflections , 1969 .

[30]  Hermann Haken,et al.  The quantum-fluctuations of the optical parametric oscillator. I , 1968 .

[31]  Robert L. Byer,et al.  Power and bandwidth of spontaneous parametric emission , 1968 .

[32]  J. D. Zook,et al.  TEMPERATURE DEPENDENCE AND MODEL OF THE ELECTRO‐OPTIC EFFECT IN LiNbO3 , 1967 .

[33]  G. Boyd,et al.  Theory of Parametric Oscillator Threshold with Single-Mode Optical Masers and Observation of Amplification in LiNb O 3 , 1966 .

[34]  G. D. Boyd,et al.  Second-Harmonic Generation of Light by Focused Laser Beams , 1966 .

[35]  J Warner,et al.  The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization , 1965 .

[36]  F. Zernike,et al.  Refractive Indices of Ammonium Dihydrogen Phosphate and Potassium Dihydrogen Phosphate between 2000 A and 1.5 mu: Errata , 1965 .

[37]  R. C. Miller OPTICAL SECOND HARMONIC GENERATION IN PIEZOELECTRIC CRYSTALS , 1964 .

[38]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .