Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds

[1]  R. Rahim,et al.  A rapid colorimetric screening method for vanillic acid and vanillin‐producing bacterial strains , 2014, Journal of applied microbiology.

[2]  S. H. Hasan,et al.  Enhanced Biosorptive Remediation of Hexavalent Chromium Using Chemotailored Biomass of a Novel Soil Isolate Bacillus aryabhattai ITBHU02: Process Variables Optimization through Artificial Neural Network Linked Genetic Algorithm , 2014 .

[3]  J. D. Dávila Costa,et al.  Current biotechnological applications of the genus Amycolatopsis , 2014, World journal of microbiology & biotechnology.

[4]  Mahaveer P. Sharma,et al.  Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India , 2014 .

[5]  Y. Singh,et al.  Performance improvement of Bacillus aryabhattai ITBHU02 for high-throughput production of a tumor-inhibitory L-asparaginase using a kinetic model based approach , 2014 .

[6]  M. Jagannadham,et al.  Extracellular l-Asparaginase from a Protease-Deficient Bacillus aryabhattai ITBHU02: Purification, Biochemical Characterization, and Evaluation of Antineoplastic Activity In Vitro , 2013, Applied Biochemistry and Biotechnology.

[7]  P. Kaewkannetra,et al.  An alternative approach to the fermentation of sweet sorghum juice into biopolymer of poly-β-hydroxyalkanoates (PHAs) by newly isolated, Bacillus aryabhattai PKV01 , 2013, Biotechnology and Bioprocess Engineering.

[8]  J. Altenbuchner,et al.  Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid , 2013, Applied Microbiology and Biotechnology.

[9]  A. Steinbüchel,et al.  Investigation of the Amycolatopsis sp. Strain ATCC 39116 Vanillin Dehydrogenase and Its Impact on the Biotechnical Production of Vanillin , 2012, Applied and Environmental Microbiology.

[10]  J. Domínguez,et al.  Purification of ferulic acid solubilized from agroindustrial wastes and further conversion into 4-vinyl guaiacol by Streptomyces setonii using solid state fermentation. , 2012 .

[11]  C. Detter,et al.  Genome Sequence of Amycolatopsis sp. Strain ATCC 39116, a Plant Biomass-Degrading Actinomycete , 2012, Journal of bacteriology.

[12]  M. Ismail,et al.  Biotransformation of ferulic acid to 4-vinyl guaiacol by Lactobacillus farciminis , 2012 .

[13]  M. E. Brown,et al.  Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. , 2011, Journal of the American Chemical Society.

[14]  J. Domínguez,et al.  Decarboxylation of Ferulic Acid to 4-Vinyl Guaiacol by Streptomyces setonii , 2011, Applied Biochemistry and Biotechnology.

[15]  O. Loera,et al.  Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger. , 2010, Bioresource technology.

[16]  U. R. Rao,et al.  Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. , 2009, International journal of systematic and evolutionary microbiology.

[17]  Kecheng Zhang,et al.  The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by Enterobacter sp. Px6-4 isolated from Vanilla root , 2008 .

[18]  B. Görke,et al.  Carbon catabolite repression in bacteria: many ways to make the most out of nutrients , 2008, Nature Reviews Microbiology.

[19]  E. Garay,et al.  Value of recN sequences for species identification and as a phylogenetic marker within the family "Leuconostocaceae". , 2008, International microbiology : the official journal of the Spanish Society for Microbiology.

[20]  L. Setti,et al.  Obtaining 4-Vinylphenols by Decarboxylation of Natural 4-Hydroxycinnamic Acids under Microwave Irradiation. , 2007 .

[21]  Z. Deng,et al.  Enhanced vanillin production from ferulic acid using adsorbent resin , 2007, Applied Microbiology and Biotechnology.

[22]  T. E. Abraham,et al.  Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii , 2007 .

[23]  B. Tindall,et al.  Phenotypic Characterization and the Principles of Comparative Systematics , 2007 .

[24]  Sook-Hee Lee,et al.  Production of Vanillin by Metabolically Engineered Escherichia coli , 2005, Biotechnology Letters.

[25]  R. Arreguín-Espinosa,et al.  Biochemical characterization of the glucose kinase from Streptomyces coelicolor compared to Streptomyces peucetius var. caesius. , 2005, Research in microbiology.

[26]  J. Rosazza,et al.  Review: Biocatalytic transformations of ferulic acid: An abundant aromatic natural product , 1995, Journal of Industrial Microbiology.

[27]  P. Christakopoulos,et al.  Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile , 2003 .

[28]  Sergio Sánchez,et al.  Metabolic regulation of fermentation processes , 2002 .

[29]  R. Sobti,et al.  Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of bacillus coagulans. , 2000, Journal of biotechnology.

[30]  S. Rao,et al.  Vanilla flavour: production by conventional and biotechnological routes , 2000 .

[31]  Lukas Wagner,et al.  A Greedy Algorithm for Aligning DNA Sequences , 2000, J. Comput. Biol..

[32]  W. Hillen,et al.  Regulation of carbon catabolism in Bacillus species. , 2000, Annual review of microbiology.

[33]  A. Muheim,et al.  Towards a high-yield bioconversion of ferulic acid to vanillin , 1999, Applied Microbiology and Biotechnology.

[34]  J. Donaghy,et al.  Conversion of ferulic acid to 4-vinyl guaiacol by yeasts isolated from unpasteurised apple juice† , 1999 .

[35]  M. Dahl,et al.  Putative contribution of glucose kinase from Bacillus subtilis to carbon catabolite repression (CCR) : a link between enzymatic regulation and CCR? , 1999 .

[36]  J. Rosazza,et al.  Decarboxylation of ferulic acid to 4-vinylguaiacol by Bacillus pumilus in aqueous-organic solvent two-phase systems , 1998 .

[37]  J. Donaghy,et al.  Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli , 1998, Applied Microbiology and Biotechnology.

[38]  U. Krings,et al.  Biotechnological production of flavours and fragrances , 1998, Applied Microbiology and Biotechnology.

[39]  A. Muheim,et al.  BIOTECHNOLOGICAL PRODUCTION OF VANILLIN , 1996 .

[40]  F. Tiemann,et al.  Ueber das Coniferin und seine Umwandlung in das aromatische Princip der Vanille , 1874 .