Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline.

Small multilayer fullerenes, also known as carbon nano-onions (CNOs; 5-6 nm in diameter, 6-8 shells), show higher reactivity than other larger carbon nanostructures. Here we report the first example of an in situ polymerization of aniline on phenyleneamine-terminated CNO surfaces. The green, protonated, conducting emeraldine polyaniline (PANI) was directly synthesized on the surface of the CNO. The functionalized and soluble CNO/PANI composites were characterized by TEM, SEM, DSC, Raman, and infrared spectroscopy. The electrochemical properties of the conducting CNO/PANI films were also investigated. In comparison with pristine CNOs, functionalized carbon nanostructures show dramatically improved solubility in protic solvents, thus enabling their easy processing for coatings, nanocomposites, and biomedical applications.

[1]  J. Stejskal,et al.  Polyaniline. Preparation of a conducting polymer(IUPAC Technical Report) , 2002, Chemistry International.

[2]  G. Wnek,et al.  Synthesis and electrochemistry of alkyl ring-substituted polyanilines , 1989 .

[3]  Fabrication of DBSA‐doped polyaniline nanorods by interfacial polymerization , 2008 .

[4]  L. Echegoyen,et al.  Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and "click" chemistry. , 2010, Organic letters.

[5]  S. Biallozor,et al.  Conducting polymers electrodeposited on active metals , 2005 .

[6]  L. Echegoyen,et al.  Radical Addition of a Conjugated Polymer to Multilayer Fullerenes (Carbon Nano-onions) , 2007 .

[7]  Meifang Zhu,et al.  Facile Fabrication of Uniform Core−Shell Structured Carbon Nanotube−Polyaniline Nanocomposites , 2009 .

[8]  G. Inzelt,et al.  Electrochemical quartz crystal microbalance study of the influence of the solution composition on the behaviour of poly(aniline) electrodes , 1998 .

[9]  C. Cachet-Vivier,et al.  Electrochemical study of the degradation kinetics of polyaniline powder in sulfuric and hydrochloric acid media , 2002 .

[10]  J. Fraser Stoddart,et al.  Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes , 2001 .

[11]  Masami Kobayashi,et al.  Oxidative polymerization of phenylenediamines catalyzed by horseradish peroxidase , 1998 .

[12]  G. Wallace,et al.  Optically active polymer carbon nanotube composite. , 2005, The journal of physical chemistry. B.

[13]  Jiirgen Heinze,et al.  Electronically conducting polymers , 1990 .

[14]  G. Wallace,et al.  Stabilization of single-wall carbon nanotubes in fully sulfonated polyaniline. , 2004, Journal of nanoscience and nanotechnology.

[15]  A. Mishra,et al.  Vibrational dynamics of polyaniline pernigraniline base form: A conducting polymer , 2008 .

[16]  Dong‐Won Kim,et al.  Polyaniline/Carbon Nanotube Composite Cathode for Rechargeable Lithium Polymer Batteries Assembled with Gel Polymer Electrolyte , 2007 .

[17]  Zhehui Wang,et al.  Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance , 2004 .

[18]  György Inzelt,et al.  Conducting Polymers: A New Era in Electrochemistry , 2008 .

[19]  Meifang Zhu,et al.  Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials , 2010 .

[20]  V. Khabashesku,et al.  Functionalization of Carbon Nano-onions by Direct Fluorination , 2007 .

[21]  E. Kong,et al.  Facile functionalization of multilayer fullerenes (carbon nano-onions) by nitrene chemistry and "grafting from" strategy. , 2009, Chemistry.

[22]  G. J. Cruz,et al.  Synthesis of polyaniline films by plasma polymerization , 1997 .

[23]  Roger Bacon,et al.  Growth, Structure, and Properties of Graphite Whiskers , 1960 .

[24]  Wenqing Zhang,et al.  Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. , 2010, ACS nano.

[25]  Su-Moon Park,et al.  Electrochemistry of Conductive Polymers II . Electrochemical Studies on Growth Properties of Polyaniline , 1988 .

[26]  B. Humbert,et al.  Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character , 1998 .

[27]  Younan Xia,et al.  Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: Conformations in Different Solvents Studied by an Ultraviolet/Visible/Near-Infrared Spectroscopic Method , 1995 .

[28]  M. Panhuis,et al.  A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer , 2002 .

[29]  A. Chuvilin,et al.  Onion-like carbon from ultra-disperse diamond , 1994 .

[30]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .

[31]  A. MacDiarmid,et al.  Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. , 1994, Physical review. B, Condensed matter.

[32]  K. Winkler,et al.  Electrochemical Properties of Small Carbon Nano-Onion Films , 2010 .

[33]  S. D. Torresi,et al.  Raman characterization of polyaniline induced conformational changes , 1999 .

[34]  D. Edie,et al.  Reactivity differences between carbon nano onions (CNOs) prepared by different methods. , 2007, Chemistry, an Asian journal.

[35]  Ji-Beom Yoo,et al.  Formation of Shell‐Shaped Carbon Nanoparticles Above a Critical Laser Power in Irradiated Acetylene , 2004 .

[36]  B. He,et al.  Electrochemical properties of polyaniline in p-toluene sulfonic acid solution , 2009 .

[37]  William B. White,et al.  Characterization of diamond films by Raman spectroscopy , 1989 .

[38]  W. Euler,et al.  Syntheses and characterization of poly(aminophenazines) , 1995 .

[39]  M. Fujii,et al.  Structure and electronic properties of carbon onions , 2001 .

[40]  M. Prato,et al.  A carbon nano-onion-ferrocene donor-acceptor system: synthesis, characterization and properties. , 2009, Chemistry.

[41]  I. Alexandrou,et al.  Characterisation of carbon nano-onions using Raman spectroscopy , 2003 .

[42]  P. Yao,et al.  Preparation and characterization of soluble and DBSA doped polyaniline grafted multi-walled carbon nanotubes nano-composite , 2009 .

[43]  A. M. Baró,et al.  Soluble Self‐Aligned Carbon Nanotube/Polyaniline Composites , 2005 .

[44]  T. Abe,et al.  Graphitized Carbon Nanobeads with an Onion Texture as a Lithium‐Ion Battery Negative Electrode for High‐Rate Use , 2005 .

[45]  Patrick A. Cooke,et al.  Molecular Characterization of the Cytotoxic Mechanism of Multiwall Carbon Nanotubes and Nano-onions on Human Skin Fibroblast , 2005 .

[46]  J. Buisson,et al.  Spectroelectrochemical measurements of the conducting form of polyaniline and related oligomers , 1999 .

[47]  John Ballato,et al.  Carbon Nanotube Doped Polyaniline , 2002 .

[48]  M. Dresselhaus,et al.  ORIGIN OF DISPERSIVE EFFECTS OF THE RAMAN D BAND IN CARBON MATERIALS , 1999 .

[49]  Z. Küçükyavuz,et al.  Conductive copolymers of polyaniline, polypyrrole and poly(dimethylsiloxane) , 2005 .

[50]  V. Pillai,et al.  An efficient route towards the covalent functionalization of single walled carbon nanotubes , 2008 .

[51]  Z. Küçükyavuz,et al.  Conducting Polymer Composites of Multiwalled Carbon Nanotube Filled Doped Polyaniline , 2008 .

[52]  Yukio Furukawa,et al.  Vibrational Spectra and Structure of Polyaniline , 1988 .

[53]  M. Karim,et al.  SWNTs coated by conducting polyaniline: Synthesis and modified properties , 2005 .

[54]  Hu-lin Li,et al.  Well-dispersed multi-walled carbon nanotube/polyaniline composite films , 2005 .

[55]  Koon Gee Neoh,et al.  POLYANILINE: A POLYMER WITH MANY INTERESTING INTRINSIC REDOX STATES , 1998 .

[56]  Maria Forsyth,et al.  Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors , 2007 .

[57]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[58]  H. Dinh,et al.  Effect of Substrate on Polyaniline Film Properties. A Cyclic Voltammetry and Impedance Study , 2000 .

[59]  David L. Carroll,et al.  A Composite from Poly(m‐phenylenevinylene‐co‐2,5‐dioctoxy‐p‐phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics , 1998 .

[60]  M. Talu,et al.  Electrochemical copolymerization of pyrrole and aniline , 1998 .

[61]  Mao Xu,et al.  Polyaniline/polypropylene film composites with high electric conductivity and good mechanical properties , 1995 .

[62]  A. Pron,et al.  Vibrational Properties of PolyanilineIsotope Effects , 1996 .

[63]  R. P. Mccall,et al.  The oxidation state of “emeraldine” base , 1989 .

[64]  O. Chauvet,et al.  Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction , 2001 .

[65]  Yufeng Ma,et al.  A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. , 2007, Analytical chemistry.

[66]  R. Landers,et al.  Structure of chemically prepared poly-(para-phenylenediamine) investigated by spectroscopic techniques , 2009 .

[67]  C. Cachet-Vivier,et al.  Voltamperommetric study of chemically made polyaniline powder with cavity microelectrode technique , 2002 .

[68]  M. Karakışla,et al.  The chemical synthesis of conductive polyaniline doped with dicarboxylic acids , 2004 .

[69]  D. Seebach,et al.  Herstellung chiraler Synthesebausteine aus Aminosäuren und Peptiden durch oxidative elektrolytische Decarboxylierung und TiCl4‐induzierte Umsetzung mit Nucleophilen , 1986 .

[70]  Armen N. Amirkhanian,et al.  Preparation and functionalization of multilayer fullerenes (carbon nano-onions). , 2005, Chemistry.

[71]  Su-Moon Park,et al.  Electrochemistry of Conductive Polymers III . Some Physical and Electrochemical Properties Observed from Electrochemically Grown Polyaniline , 1988 .

[72]  D. Ugarte Curling and closure of graphitic networks under electron-beam irradiation , 1992, Nature.

[73]  Serge Lefrant,et al.  Polyaniline and Carbon Nanotubes Based Composites Containing Whole Units and Fragments of Nanotubes , 2003 .

[74]  V. Kuznetsov,et al.  Onion-like carbon and diamond nanoparticles for optical limiting , 2002 .

[75]  J. Rishpon,et al.  Electrochemical Impedance Analysis of Polyaniline Films on Electrodes , 1987 .

[76]  M. Panhuis,et al.  Selective Interaction in a Polymer−Single-Wall Carbon Nanotube Composite , 2003 .

[77]  S. Dong,et al.  Polyaniline-coated carbon particles and their electrode behavior in organic carbonate electrolyte , 2004 .

[78]  H. Neugebauer,et al.  In situ Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopic investigations on the base-acid transitions of leucoemeraldine , 1997 .

[79]  Wei Zhao,et al.  Electron transfer chemistry of octadecylamine-functionalized single-walled carbon nanotubes , 2005 .

[80]  Silvia Lanteri,et al.  Topics in Current Chemistry, 151, 93-143 (1987) , 1987 .

[81]  H. Lee,et al.  Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide , 2008 .

[82]  David L. Carroll,et al.  Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: the role of carbon nanotubes in a hole conducting polymer , 2001 .

[83]  Shouzhuo Yao,et al.  Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite , 2005 .

[84]  Xin-Gui Li,et al.  Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. , 2002, Chemical reviews.