Behavioral modeling of statistical phenomena of single‐photon avalanche diodes

In this paper, we present an accurate behavioral model for simulating single-photon avalanche diodes (SPADs). The device operation is described using the Verilog-A description language, which is an analog extension of the common digital hardware description language. The derived model is able to emulate the static, the dynamic behavior and the main statistical effects of an SPAD, such as the turn-off probability, the dark-count and the after-pulsing phenomena. Spectre simulations reveal the validity of the approach showing a good matching between the behavior of the proposed model and experimental results reported in the literature. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  A. Tosi,et al.  InGaAs/InP Single Photon Avalanche Diode Design and Characterization , 2006, European Solid-State Device Research Conference.

[2]  A. Tosi,et al.  PERFORMANCE OF COMMERCIALLY AVAILABLE InGaAs/InP SPAD WITH CUSTOM ELECTRONICS , 2010 .

[3]  S. Cova,et al.  Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors , 2003, IEEE J. Solid State Circuits.

[4]  Lloyd M. Davis,et al.  Single photon avalanche diode for single molecule detection , 1993, Optical Society of America Annual Meeting.

[5]  A. Tosi,et al.  Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications , 2007 .

[6]  A. Tosi,et al.  Single-Photon Avalanche Diode Model for Circuit Simulations , 2007, IEEE Photonics Technology Letters.

[7]  Radivoje Popovic,et al.  Actively recharged single photon counting avalanche photodiode integrated in an industrial CMOS process , 2004 .

[8]  Xudong Jiang,et al.  Negative feedback avalanche diodes for near-infrared single-photon detection , 2009, Defense + Commercial Sensing.

[9]  G.J. Coram,et al.  How to (and how not to) write a compact model in Verilog-A , 2004, Proceedings of the 2004 IEEE International Behavioral Modeling and Simulation Conference, 2004. BMAS 2004..

[10]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[11]  A. Lacaita,et al.  Trapping phenomena in avalanche photodiodes on nanosecond scale , 1991, IEEE Electron Device Letters.

[12]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Andrea L. Lacaita,et al.  All-silicon avalanche photodiode sensitive at 1.3 mu m with picosecond time resolution , 1992 .

[14]  Gaetano Palumbo,et al.  Accurate model for single-photon avalanche diodes , 2008, IET Circuits Devices Syst..

[15]  Massimo Ghioni,et al.  Avalanche detector with ultraclean response for time-resolved photon counting , 1998 .

[16]  A. Lacaita,et al.  Physics and numerical simulation of single photon avalanche diodes , 1997 .

[17]  R. Haitz,et al.  Model for the Electrical Behavior of a Microplasma , 1964 .

[18]  M. Hayat,et al.  Dependence of the Performance of Single Photon Avalanche Diodes on the Multiplication Region Width , 2008, IEEE Journal of Quantum Electronics.

[19]  A. Tosi,et al.  Principles and features of Single Photon Avalanche Diode Arrays , 2007 .

[20]  Sergio Cova,et al.  Performance comparison of a single‐photon avalanche diode with a microchannel‐plate photomultiplier in time‐correlated single‐photon counting , 1988 .

[21]  S. Cova,et al.  Compact active quenching circuit for fast photon counting with avalanche photodiodes , 1996 .

[22]  R. Mcintyre,et al.  Photon counting techniques with silicon avalanche photodiodes. , 1993, Applied optics.

[23]  Franco Stellari,et al.  High-speed CMOS circuit testing by 50 ps time-resolved luminescence measurements , 2001 .

[24]  S. Cova,et al.  Towards picosecond resolution with single-photon avalanche diodes , 1981 .

[25]  Carlo Samori,et al.  An integrated active-quenching circuit for single-photon avalanche diodes , 2000, IEEE Trans. Instrum. Meas..

[26]  M. Deen,et al.  Fully Integrated Single Photon Avalanche Diode Detector in Standard CMOS 0.18- $\mu$m Technology , 2008, IEEE Transactions on Electron Devices.

[27]  E. Charbon,et al.  A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  R Cubeddu,et al.  FLUORESCENCE LIFETIMES OF ANGULAR FUROCOUMARINS , 1987, Photochemistry and photobiology.

[29]  Andrew M. Wallace,et al.  3D imaging and ranging by time-correlated single photon counting , 2001 .

[30]  M Ghioni,et al.  High-accuracy picosecond characterization of gain-switched laser diodes. , 1989, Optics letters.

[31]  G. Fallica,et al.  Silicon Geiger mode avalanche photodiodes , 2007 .

[32]  X. Xie,et al.  Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer , 2003, Science.

[33]  S. Cova,et al.  A process and deep level evaluation tool: afterpulsing in avalanche junctions , 2003, ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003..

[34]  S. Esener,et al.  STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology , 2006, IEEE Electron Device Letters.

[35]  I. Miller,et al.  Verilog-A and Verilog-AMS provides a new dimension in modeling and simulation , 2000, Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.00TH8474).

[36]  Gaetano Palumbo,et al.  High-Speed and Compact Quenching Circuit for Single-Photon Avalanche Diodes , 2008, IEEE Transactions on Instrumentation and Measurement.

[37]  W. Oldham,et al.  Triggering phenomena in avalanche diodes , 1972 .

[38]  M. J. Deen,et al.  Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes , 1995 .

[39]  R. J. McIntyre,et al.  Theory of Microplasma Instability in Silicon , 1961 .

[40]  F. Zappa,et al.  Monolithic CMOS detector module for photon counting and picosecond timing , 2004, Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850).

[41]  Mingguo Liu,et al.  Reduce Afterpulsing of Single Photon Avalanche Diodes Using Passive Quenching With Active Reset , 2008, IEEE Journal of Quantum Electronics.

[42]  R. Haitz Mechanisms Contributing to the Noise Pulse Rate of Avalanche Diodes , 1965 .

[43]  Franco Zappa,et al.  Complete single-photon counting and timing module in a microchip. , 2005, Optics letters.

[44]  J. Rarity,et al.  Single photon interference in 10 km long optical fibre interferometer , 1993 .

[45]  S. Cova,et al.  Effects of trap levels in single-photon optical time-domain reflectometry: evaluation and correction , 1992 .

[46]  Gaetano Palumbo,et al.  A fast driver circuit for single-photon sensors , 2006, Microelectron. J..

[47]  F. Zappa,et al.  Photon-counting chip for avalanche detectors , 2005, IEEE Photonics Technology Letters.

[48]  J.C. Campbell,et al.  Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes , 2006, IEEE Journal of Quantum Electronics.

[49]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[50]  N. Nightingale,et al.  A new silicon avalanche photodiode photon counting detector module for astronomy , 1990 .

[51]  G. Ripamonti,et al.  Active-Quenching and Gating Circuits for Single-Photon Avalanche Diodes (SPADs) , 1982, IEEE Transactions on Nuclear Science.

[52]  M. Ghioni,et al.  Single-photon avalanche diode with ultrafast pulse response free from slow tails , 1993, IEEE Electron Device Letters.

[53]  P.-A. Besse,et al.  Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes , 2005, IEEE Journal of Solid-State Circuits.

[54]  Theodore I. Kamins,et al.  Device Electronics for Integrated Circuits , 1977 .

[55]  Franco Zappa,et al.  Silicon planar technology for single-photon optical detectors , 2003 .

[56]  A. Goetzberger,et al.  Avalanche Effects in Silicon p—n Junctions. II. Structurally Perfect Junctions , 1963 .