On Edge Irregular Total Labeling of Categorical Product of Two Cycles

An edge irregular total k-labeling φ:V(G)∪E(G)→{1,2,…,k} of a graph G=(V,E) is a labeling of vertices and edges of G in such a way that for any different edges xy and x′y′ their weights φ(x)+φ(xy)+φ(y) and φ(x′)+φ(x′y′)+φ(y′) are distinct. The total edge irregularity strength, tes(G), is defined as the minimum k for which G has an edge irregular total k-labeling.In this paper, we determine the exact value of the total edge irregularity strength of the categorical product of two cycles Cn and Cm, for n,m≥3.

[1]  Claude Tardif,et al.  Chromatic numbers of products of graphs: The directed and undirected versions of the Poljak-Rödl function , 2006, J. Graph Theory.

[2]  Stanislav Jendrol',et al.  The irregularity strength and cost of the union of cliques , 1996, Discret. Math..

[3]  Olivier Togni Irregularity strength of the toroidal grid , 1997, Discret. Math..

[4]  Tom Bohman,et al.  On the irregularity strength of trees , 2004, J. Graph Theory.

[5]  Stanislav Jendrol',et al.  Total edge irregularity strength of trees , 2006, Discuss. Math. Graph Theory.

[6]  Stanislav Jendrol',et al.  Total edge irregularity strength of complete graphs and complete bipartite graphs , 2010, Discret. Math..

[7]  Ali Ahmad,et al.  Total edge irregularity strength of a categorical product of two paths , 2014, Ars Comb..

[8]  Stanislav Jendrol',et al.  Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs , 2007, Electron. Notes Discret. Math..

[9]  Douglas F. Rall,et al.  Total Domination in Categorical Products of Graphs , 2005, Discuss. Math. Graph Theory.

[10]  Dieter Rautenbach,et al.  On a conjecture about edge irregular total labelings , 2008 .

[11]  Khandoker Mohammed Mominul Haque Irregular Total Labellings of Generalized Petersen Graphs , 2011, Theory of Computing Systems.

[12]  David K. Garnick,et al.  On the irregularity strength of the m × n grid , 1992, J. Graph Theory.

[13]  Stanislav Jendrol',et al.  On irregular total labellings , 2007, Discret. Math..

[14]  Dieter Rautenbach,et al.  On a conjecture about edge irregular total labelings , 2008, J. Graph Theory.