On Edge Irregular Total Labeling of Categorical Product of Two Cycles
暂无分享,去创建一个
[1] Claude Tardif,et al. Chromatic numbers of products of graphs: The directed and undirected versions of the Poljak-Rödl function , 2006, J. Graph Theory.
[2] Stanislav Jendrol',et al. The irregularity strength and cost of the union of cliques , 1996, Discret. Math..
[3] Olivier Togni. Irregularity strength of the toroidal grid , 1997, Discret. Math..
[4] Tom Bohman,et al. On the irregularity strength of trees , 2004, J. Graph Theory.
[5] Stanislav Jendrol',et al. Total edge irregularity strength of trees , 2006, Discuss. Math. Graph Theory.
[6] Stanislav Jendrol',et al. Total edge irregularity strength of complete graphs and complete bipartite graphs , 2010, Discret. Math..
[7] Ali Ahmad,et al. Total edge irregularity strength of a categorical product of two paths , 2014, Ars Comb..
[8] Stanislav Jendrol',et al. Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs , 2007, Electron. Notes Discret. Math..
[9] Douglas F. Rall,et al. Total Domination in Categorical Products of Graphs , 2005, Discuss. Math. Graph Theory.
[10] Dieter Rautenbach,et al. On a conjecture about edge irregular total labelings , 2008 .
[11] Khandoker Mohammed Mominul Haque. Irregular Total Labellings of Generalized Petersen Graphs , 2011, Theory of Computing Systems.
[12] David K. Garnick,et al. On the irregularity strength of the m × n grid , 1992, J. Graph Theory.
[13] Stanislav Jendrol',et al. On irregular total labellings , 2007, Discret. Math..
[14] Dieter Rautenbach,et al. On a conjecture about edge irregular total labelings , 2008, J. Graph Theory.