Algebraic and computer-based methods in the undirected degree/diameter problem - A brief survey

This paper discusses the most popular algebraic techniques and computational methods that have been used to construct large graphs with given degree and diameter.

[1]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[2]  Hebert Pérez-Rosés,et al.  Searching for Large Multi-Loop Networks , 2014, Electron. Notes Discret. Math..

[3]  Mirka Miller,et al.  Two new families of large compound graphs , 2006 .

[4]  Geoffrey Exoo,et al.  Voltage Graphs, Group Presentations and Cages , 2004, Electron. J. Comb..

[5]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[6]  Noga Alon,et al.  Semi-direct product in groups and zig-zag product in graphs: connections and applications , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[7]  Michael Sampels,et al.  Large Networks with Small Diameter , 1997, WG.

[8]  Paul R. Hafner Large Cayley Graphs and Digraphs with Small Degree and Diameter , 1995 .

[9]  Avi Wigderson,et al.  Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[10]  F. Comellas,et al.  New large graphs with given degree and diameter , 1994, math/9411218.

[11]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[12]  Tomás Vetrík,et al.  Large Cayley graphs and vertex‐transitive non‐Cayley graphs of given degree and diameter , 2010, J. Graph Theory.

[13]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[14]  Makoto Imase,et al.  A Design for Directed Graphs with Minimum Diameter , 1983, IEEE Transactions on Computers.

[15]  Clement W. H. Lam,et al.  Backtrack Search with Isomorph Rejection and Consistency Check , 1989, J. Symb. Comput..

[16]  Eugene Curtin,et al.  Cubic Cayley graphs with small diameter , 2001, Discret. Math. Theor. Comput. Sci..

[17]  B. Elspas,et al.  Graphs with circulant adjacency matrices , 1970 .

[18]  David P. Williamson,et al.  The Design of Approximation Algorithms , 2011 .

[19]  Tomás Vetrík,et al.  Abelian Cayley Graphs of Given Degree and Diameter 2 and 3 , 2014, Graphs Comb..

[20]  Mirka Miller,et al.  HSAGA and its application for the construction of near-Moore digraphs , 2008, J. Discrete Algorithms.

[21]  Shuhong Gao,et al.  Fault Tolerance of Cayley Graphs , 2007 .

[22]  Jhing-Fa Wang,et al.  Reliable circulant networks with minimum transmission delay , 1985 .

[23]  J.-C. Bermond,et al.  An Optimization Problem in Distributed Loop Computer Networks , 1989 .

[24]  Eyal Loz,et al.  New record graphs in the degree-diameter problem , 2008, Australas. J Comb..

[25]  Miguel Angel Fiol,et al.  Line Digraph Iterations and the (d, k) Digraph Problem , 1984, IEEE Transactions on Computers.

[26]  Hebert Pérez-Rosés,et al.  New largest known graphs of diameter 6 , 2009, Networks.

[27]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[28]  Tomás Vetrík,et al.  Large bipartite Cayley graphs of given degree and diameter , 2011, Discret. Math..

[29]  Eyal Loz,et al.  New Benchmarks for Large-Scale Networks with Given Maximum Degree and Diameter , 2010, Comput. J..

[30]  Chak-Kuen Wong,et al.  A Combinatorial Problem Related to Multimodule Memory Organizations , 1974, JACM.

[31]  Brendan D. McKay,et al.  A Note on Large Graphs of Diameter Two and Given Maximum Degree, , 1998, J. Comb. Theory, Ser. B.

[32]  F.P. Muga,et al.  Undirected circulant graphs , 1994, Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN).

[33]  Miguel Angel Fiol,et al.  On large (Delta, D)-graphs , 1993, Discret. Math..

[34]  Geoffrey Exoo A family of graphs and the degree-diameter problem , 2001 .

[35]  Robert A. Sulanke,et al.  OBJECTS COUNTED BY THE CENTRAL DELANNOY NUMBERS , 2003 .

[36]  O. Monakhov,et al.  Using evolutionary algorithm for generation of dense families of circulant networks , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[37]  Gene Cooperman,et al.  New Methods for Using Cayley Graphs in Interconnection Networks , 1992, Discret. Appl. Math..

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  Mirka Miller,et al.  A Note on Constructing Large Cayley Graphs of Given Degree and Diameter by Voltage Assignments , 1997, Electron. J. Comb..

[40]  David Pask,et al.  Voltage Graphs , 2007 .

[41]  Wenjun Xiao,et al.  Cayley graphs as models of deterministic small-world networks , 2006, Inf. Process. Lett..

[42]  R. Stanton,et al.  Note on a “Square” Functional Equation , 1970 .

[43]  G. Exoo,et al.  Dynamic Cage Survey , 2011 .

[44]  Frank K. Hwang,et al.  A survey on multi-loop networks , 2003, Theor. Comput. Sci..

[45]  Camino Balbuena,et al.  New large graphs with given degree and diameter six , 1994, Networks.

[46]  Charles Delorme,et al.  Large graphs with given degree and diameter. II , 1984, J. Comb. Theory, Ser. B.

[47]  J. Gómez Martí,et al.  Two new families of large compound graphs , 2006, Networks.

[48]  Jozef Sirán,et al.  Approaching the Moore bound for diameter two by Cayley graphs , 2012, J. Comb. Theory, Ser. B.

[49]  Luca Trevisan,et al.  Inapproximability of Combinatorial Optimization Problems , 2004, Electron. Colloquium Comput. Complex..

[50]  Jaroslav Opatrny,et al.  DCC Linear Congruential Graphs: A New Class of Interconnection Networks , 1996, IEEE Trans. Computers.

[51]  Charles Delorme,et al.  Tables of Large Graphs with Given Degree and Diameter , 1982, Inf. Process. Lett..

[52]  Jonathan L. Gross,et al.  Voltage graphs , 1974, Discret. Math..

[53]  Marie-Claude Heydemann,et al.  Cayley graphs and interconnection networks , 1997 .

[54]  Charles Delorme,et al.  Examples of Products Giving Large Graphs with Given Degree and Diameter , 1992, Discret. Appl. Math..

[55]  J. Fàbrega,et al.  Some compound graphs. , 1983 .

[56]  Brian Alspach,et al.  Cayley Graphs with Optimal Fault Tolerance , 1992, IEEE Trans. Computers.

[57]  Bernard Elspas,et al.  Topological constraints on interconnection-limited logic , 1964, SWCT.

[58]  Julián Mestre,et al.  Greedy in Approximation Algorithms , 2006, ESA.

[59]  M. Muzychuk A Solution of the Isomorphism Problem for Circulant Graphs , 2004 .

[60]  Eduardo Alberto Canale,et al.  Asymptotically large (Delta, D)-graphs , 2005, Discret. Appl. Math..

[61]  Hebert Pérez-Rosés,et al.  The maximum degree and diameter-bounded subgraph in the mesh , 2012, Discret. Appl. Math..

[62]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[63]  Andrej Zlatos,et al.  The diameter of lifted digraphs , 1999, Australas. J Comb..

[64]  S. Lakshmivarahan,et al.  Symmetry in Interconnection Networks Based on Cayley Graphs of Permutation Groups: A Survey , 1993, Parallel Comput..

[65]  Jean-Jacques Quisquater,et al.  Structures d'interconnexion : constructions et applications , 1987 .

[66]  Emilia A. Monakhova,et al.  A Survey on Undirected circulant Graphs , 2012, Discret. Math. Algorithms Appl..

[67]  Alan J. Hoffman,et al.  On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..

[68]  J. Sirán,et al.  Moore Graphs and Beyond: A survey of the Degree/Diameter Problem , 2013 .

[69]  Gregory Butler,et al.  A General Backtrack Algorithm for the Isomorphism Problem of Combinatorial Objects , 1985, J. Symb. Comput..

[70]  Eyal Loz Graphs of given degree and diameter obtained as abelian lifts of dipoles , 2009, Discret. Math..

[71]  G. Farhi,et al.  Large Graphs with Given Degree and Diameter III , 1982 .

[72]  Makoto Imase,et al.  Design to Minimize Diameter on Building-Block Network , 1981, IEEE Transactions on Computers.

[73]  Miguel Angel Fiol,et al.  Using Simulated Annealing to Design Interconnection Networks , 1991 .

[74]  Michael J. Dinneen,et al.  New results for the degree/diameter problem , 1994, Networks.

[75]  Mirka Miller,et al.  Small vertex‐transitive and Cayley graphs of girth six and given degree: an algebraic approach , 2011, J. Graph Theory.

[76]  Geoffrey Exoo,et al.  On the girth of voltage graph lifts , 2011, Eur. J. Comb..

[77]  Jana Siagiová,et al.  A Note on the McKay-Miller-Sira'n Graphs , 2001, J. Comb. Theory, Ser. B.

[78]  Geoffrey Exoo Some New Ramsey Colorings , 1998, Electron. J. Comb..

[79]  Otto Wohlmuth,et al.  A New Dense Group Graph Discovered by an Evolutionary Approach , 1996 .

[80]  Robert R. Lewis,et al.  The Degree-Diameter Problem for Circulant Graphs of Degree 8 and 9 , 2014, Electron. J. Comb..

[81]  Richard M. Stafford,et al.  Processor Interconnection Networks from Cayley Graphs , 1992, Discret. Appl. Math..

[82]  James Allwright,et al.  New (Delta, D) Graphs Discovered by Heuristic Search , 1992, Discret. Appl. Math..

[83]  Jozef Sirán,et al.  A note on large Cayley graphs of diameter two and given degree , 2005, Discret. Math..

[84]  W. Marsden I and J , 2012 .

[85]  Charles Delorme,et al.  Some New Large Compound Graphs , 2002, Eur. J. Comb..

[86]  G. Sabidussi On a class of fixed-point-free graphs , 1958 .

[87]  Randall Dougherty,et al.  The Degree-Diameter Problem for Several Varieties of Cayley Graphs I: The Abelian Case , 2004, SIAM J. Discret. Math..

[88]  Jozef Sirán,et al.  Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups , 2012, Discret. Math..

[89]  Tomás Vetrík,et al.  Cayley graphs of given degree and diameters 3, 4 and 5 , 2013, Discret. Math..

[90]  Geoffrey Exoo,et al.  Properties of Groups for the Cage and Degree/Diameter Problems , 2009, Electron. Notes Discret. Math..