Non-mammalian vertebrate embryos as models in nanomedicine.

[1]  F. Lin,et al.  Gelatin nanoparticles as gene carriers for transgenic chicken applications , 2013, Journal of biomaterials applications.

[2]  Anton J. Enright,et al.  The zebrafish reference genome sequence and its relationship to the human genome , 2013, Nature.

[3]  Richard T. Lee,et al.  Model systems for cardiovascular regenerative biology. , 2013, Cold Spring Harbor perspectives in medicine.

[4]  Y. Morimoto,et al.  Inhalation toxicity assessment of carbon-based nanoparticles. , 2013, Accounts of chemical research.

[5]  Lisa Truong,et al.  Surface functionalities of gold nanoparticles impact embryonic gene expression responses , 2013, Nanotoxicology.

[6]  Liang Zhao,et al.  Application of pharmacokinetics-pharmacodynamics/clinical response modeling and simulation for biologics drug development. , 2012, Journal of pharmaceutical sciences.

[7]  K. Dawson,et al.  Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[8]  G Vecchio,et al.  In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity. , 2012, Nanoscale.

[9]  D. Jacqmin,et al.  From development to cancer: lessons from the kidney to uncover new therapeutic targets. , 2012, Anticancer research.

[10]  Richard E Peterson,et al.  Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish , 2012, Nanotoxicology.

[11]  M. Rescigno,et al.  Should probiotics be tested on ex vivo organ culture models? , 2012, Gut microbes.

[12]  Melvin E. Andersen,et al.  Organotypic liver culture models: Meeting current challenges in toxicity testing , 2012, Critical reviews in toxicology.

[13]  M. Camatini,et al.  Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development , 2012, Nanotoxicology.

[14]  Sanjib Bhattacharyya,et al.  Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. , 2012, Chemical Society reviews.

[15]  M. E. Zuber,et al.  Site‐specific transgenesis in Xenopus , 2012, Genesis.

[16]  Mona Treguer-Delapierre,et al.  Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: The role of size, concentration and exposure time , 2012, Nanotoxicology.

[17]  Albert Duschl,et al.  Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells , 2011, Particle and Fibre Toxicology.

[18]  Jian-Zhong Shao,et al.  Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model , 2011, International journal of nanomedicine.

[19]  T. Niemiec,et al.  Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo , 2011, International journal of nanomedicine.

[20]  Vicki Stone,et al.  Quantum dot cytotoxicity in vitro: An investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials , 2011, Nanotoxicology.

[21]  P. Skourides,et al.  Split-Inteins for Simultaneous, site-specific conjugation of Quantum Dots to multiple protein targets In vivo , 2011, Journal of nanobiotechnology.

[22]  Lutz Mädler,et al.  High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. , 2011, ACS nano.

[23]  M. Dutreix,et al.  Comparison of distribution and activity of nanoparticles with short interfering DNA (Dbait) in various living systems , 2011, Cancer Gene Therapy.

[24]  Robert L. Tanguay,et al.  Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish , 2011, Archives of Toxicology.

[25]  Andries Zijlstra,et al.  Evaluation of Nanoparticle Uptake in Tumors in Real Time Using Intravital Imaging , 2011, Journal of visualized experiments : JoVE.

[26]  A. Piersma,et al.  Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles. , 2011, Toxicology and applied pharmacology.

[27]  Stacey L. Harper,et al.  Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardized Materials and Rapid Assays , 2011, ACS nano.

[28]  Aldert H Piersma,et al.  Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies. , 2011, Toxicology in vitro : an international journal published in association with BIBRA.

[29]  Anandika Dhaliwal,et al.  Protein-polymer nanoparticles for nonviral gene delivery. , 2011, Biomacromolecules.

[30]  Saber M Hussain,et al.  Surface charge of gold nanoparticles mediates mechanism of toxicity. , 2011, Nanoscale.

[31]  Marc-André Fortin,et al.  Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. , 2010, Contrast media & molecular imaging.

[32]  Mara Ghiazza,et al.  Physico-chemical features of engineered nanoparticles relevant to their toxicity , 2010, Nanotoxicology.

[33]  Periklis Pantazis,et al.  Second harmonic generating (SHG) nanoprobes for in vivo imaging , 2010, Proceedings of the National Academy of Sciences.

[34]  T. Blundell,et al.  Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis , 2010, Proceedings of the National Academy of Sciences.

[35]  Joseph Irudayaraj,et al.  Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. , 2010, ACS nano.

[36]  Qasim Chaudhry,et al.  A complementary definition of nanomaterial , 2010 .

[37]  James B. Mitchell,et al.  Evaluation of the fullerene compound DF-1 as a radiation protector , 2010, Radiation oncology.

[38]  Benoit Dubertret,et al.  Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. , 2010, ACS nano.

[39]  Helinor J Johnston,et al.  A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity , 2010, Critical reviews in toxicology.

[40]  Sílvia Osuna,et al.  On the mechanism of action of fullerene derivatives in superoxide dismutation. , 2010, Chemistry.

[41]  Robert Langer,et al.  Tissue-specific gene delivery via nanoparticle coating. , 2010, Biomaterials.

[42]  Susan Newbigging,et al.  In vivo quantum-dot toxicity assessment. , 2010, Small.

[43]  T. Wagner,et al.  Detection of single quantum dots in model organisms with sheet illumination microscopy. , 2009, Biochemical and biophysical research communications.

[44]  P. Skourides,et al.  Imaging morphogenesis, in Xenopus with Quantum Dot nanocrystals , 2009, Mechanisms of Development.

[45]  Prakash D Nallathamby,et al.  Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. , 2009, Nanoscale.

[46]  Vincent M. Rotello,et al.  Multimodal drug delivery using gold nanoparticles. , 2009, Nanoscale.

[47]  Mina Choi,et al.  The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. , 2009, Toxicology letters.

[48]  Kaja Kasemets,et al.  Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. , 2009, Toxicology in vitro : an international journal published in association with BIBRA.

[49]  Markus Reischl,et al.  Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. , 2009, Reproductive toxicology.

[50]  R. Albrecht,et al.  Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. , 2009, Small.

[51]  Silvana Andreescu,et al.  Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. , 2009, Environmental science & technology.

[52]  D. Furgeson,et al.  Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. , 2009, Advanced drug delivery reviews.

[53]  Hae-Chul Park,et al.  Intravital imaging in zebrafish using quantum dots , 2009, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[54]  John J. Schlager,et al.  Toxicity Evaluation for Safe Use of Nanomaterials: Recent Achievements and Technical Challenges , 2009 .

[55]  Peng Wang,et al.  In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. , 2009, The Science of the total environment.

[56]  A. Bhushan,et al.  Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts , 2008, International journal of nanomedicine.

[57]  Paresh Chandra Ray,et al.  Challenge in Understanding Size and Shape Dependent Toxicity of Gold Nanomaterials in Human Skin Keratinocytes. , 2008, Chemical physics letters.

[58]  D. L. Weeks,et al.  Transgenesis procedures in Xenopus , 2008, Biology of the cell.

[59]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[60]  H. Karlsson,et al.  Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. , 2008, Chemical research in toxicology.

[61]  Gareth J Waldron,et al.  Zebrafish based assays for the assessment of cardiac, visual and gut function--potential safety screens for early drug discovery. , 2008, Journal of pharmacological and toxicological methods.

[62]  Craig A. Poland,et al.  Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. , 2008, Nature nanotechnology.

[63]  A. Anas,et al.  Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots. , 2008, The journal of physical chemistry. B.

[64]  Z. Gong,et al.  Toxicity of silver nanoparticles in zebrafish models , 2008, Nanotechnology.

[65]  Prakash D Nallathamby,et al.  Design of stable and uniform single nanoparticle photonics for in vivo dynamics imaging of nanoenvironments of zebrafish embryonic fluids. , 2008, ACS nano.

[66]  M. Eid,et al.  In vivo photodynamic activity of photosensitizer-loaded nanoparticles: formulation properties, administration parameters and biological issues involved in PDT outcome. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[67]  K. Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[68]  W. Heideman,et al.  Developmental toxicity of low generation PAMAM dendrimers in zebrafish. , 2007, Toxicology and applied pharmacology.

[69]  Prakash D Nallathamby,et al.  In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. , 2007, ACS nano.

[70]  L. Vlahos,et al.  Amifostine: the first selective-target and broad-spectrum radioprotector. , 2007, The oncologist.

[71]  Yan Li,et al.  Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: Buckminsterfullerene aggregates (nC60) and fullerol , 2007, Environmental toxicology and chemistry.

[72]  P. Currie,et al.  Animal models of human disease: zebrafish swim into view , 2007, Nature Reviews Genetics.

[73]  S. Mousa,et al.  Carbon inhibits vascular endothelial growth factor‐ and fibroblast growth factor‐promoted angiogenesis , 2007, FEBS letters.

[74]  Phil G Campbell,et al.  The use of quantum dots for analysis of chick CAM vasculature. , 2007, Microvascular research.

[75]  G. Sayler,et al.  Attributing Effects of Aqueous C60 Nano-Aggregates to Tetrahydrofuran Decomposition Products in Larval Zebrafish by Assessment of Gene Expression , 2007, Environmental health perspectives.

[76]  Steffen Hackbarth,et al.  Long-term exposure to CdTe quantum dots causes functional impairments in live cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[77]  M. McAleer,et al.  In vivo Radioprotection by the Fullerene Nanoparticle DF-1 as Assessed in a Zebrafish Model , 2006, Clinical Cancer Research.

[78]  Lang Tran,et al.  Safe handling of nanotechnology , 2006, Nature.

[79]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[80]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[81]  J. Schlager,et al.  In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[82]  Rajan P. Kulkarni,et al.  Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[83]  H. Naora,et al.  Homeobox gene expression in cancer: insights from developmental regulation and deregulation. , 2005, European journal of cancer.

[84]  Ron C. Hardman A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors , 2005, Environmental health perspectives.

[85]  Alexander Wei,et al.  Magnetomotive contrast for in vivo optical coherence tomography. , 2005, Optics express.

[86]  Richard E Peterson,et al.  Zebrafish as a model vertebrate for investigating chemical toxicity. , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[87]  Sandra J Rosenthal,et al.  Binding of muscimol-conjugated quantum dots to GABAC receptors. , 2005, Journal of the American Chemical Society.

[88]  P. Chien,et al.  Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo , 2005, Cancer Gene Therapy.

[89]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[90]  R. Gurny,et al.  Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. , 2004, International journal of pharmaceutics.

[91]  Anthony Atala,et al.  Gold Nanoparticles Inhibit VEGF165-Induced Proliferation of HUVEC Cells , 2004 .

[92]  F André,et al.  DNA electrotransfer: its principles and an updated review of its therapeutic applications , 2004, Gene therapy.

[93]  Joseph A Izatt,et al.  Protein-based molecular contrast optical coherence tomography with phytochrome as the contrast agent. , 2004, Optics letters.

[94]  A. Wobus,et al.  Embryonic stem cell-derived cardiac, neuronal and pancreatic cells as model systems to study toxicological effects. , 2004, Toxicology letters.

[95]  Martin P Meyer,et al.  In vivo imaging of synapse formation on a growing dendritic arbor , 2004, Nature Neuroscience.

[96]  E. Keithley,et al.  A natural allele of Nxf1 suppresses retrovirus insertional mutations , 2003, Nature Genetics.

[97]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[98]  M. Asashima,et al.  Tissue generation from amphibian animal caps. , 2003, Current opinion in genetics & development.

[99]  Siavash Yazdanfar,et al.  Molecular contrast in optical coherence tomography by use of a pump-probe technique. , 2003, Optics letters.

[100]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[101]  P H Burri,et al.  Chorioallantoic membrane capillary bed: A useful target for studying angiogenesis and anti‐angiogenesis in vivo , 2001, The Anatomical record.

[102]  S. Fraser,et al.  Direct imaging of in vivo neuronal migration in the developing cerebellum , 2001, Current Biology.

[103]  I. Zhdanova,et al.  Melatonin promotes sleep-like state in zebrafish 1 1 Published on the World Wide Web on 6 April 2001. , 2001, Brain Research.

[104]  David A. Williams,et al.  Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells , 2000, Nature Medicine.

[105]  T. Raju,et al.  Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. , 2000, Glycobiology.

[106]  M. Welsh,et al.  Enhancement of calcium phosphate-mediated transfection by inclusion of adenovirus in coprecipitates , 1999, Gene Therapy.

[107]  J. Gearhart New Potential for Human Embryonic Stem Cells , 1998, Science.

[108]  R. Levy,et al.  Arterial uptake of biodegradable nanoparticles: effect of surface modifications. , 1998, Journal of pharmaceutical sciences.

[109]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[110]  Robert J. Levy,et al.  Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery , 1997 .

[111]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[112]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[113]  B. Isomaa,et al.  The use of freshly isolated gill epithelial cells in toxicity testing. , 1995, Toxicology in vitro : an international journal published in association with BIBRA.

[114]  N. Yang,et al.  Gene gun and other non-viral approaches for cancer gene therapy , 1995, Nature Medicine.

[115]  David G. Porter,et al.  Ethical scores for animal experiments , 1992, Nature.

[116]  E. Adamson,et al.  Oncogenes in development. , 1987, Development.

[117]  D. J. Morton Comparison of in vitro release of prostaglandin E2 from various pessary bases , 1984 .

[118]  E. Neumann,et al.  Gene transfer into mouse lyoma cells by electroporation in high electric fields. , 1982, The EMBO journal.

[119]  R. Jaenisch,et al.  Microinjection of cloned retroviral genomes into mouse zygotes: integration and expression in the animal , 1981, Nature.

[120]  W. Russell,et al.  The Principles of Humane Experimental Technique , 1960 .

[121]  N. Funel,et al.  Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields. , 2011, Nanomedicine.

[122]  Te-Hao Chen,et al.  Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). , 2011, Marine pollution bulletin.

[123]  A. Oates,et al.  Simple and efficient transgenesis with meganuclease constructs in zebrafish. , 2009, Methods in molecular biology.

[124]  Hiroshi Kikuta,et al.  Transgenesis in zebrafish with the tol2 transposon system. , 2009, Methods in molecular biology.

[125]  Sha Jin,et al.  Nanoparticle-mediated gene delivery. , 2009, Methods in molecular biology.

[126]  L. Zon,et al.  In vivo drug discovery in the zebrafish , 2005, Nature Reviews Drug Discovery.

[127]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[128]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[129]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[130]  R. Ivarie Avian transgenesis: progress towards the promise. , 2003, Trends in biotechnology.

[131]  H. Bergh,et al.  A new drug-screening procedure for photosensitizing agents used in photodynamic therapy for CNV. , 2001, Investigative ophthalmology & visual science.

[132]  F. Cotelli,et al.  Identification and spatial distribution of the mRNA encoding an egg envelope component of the Cyprinid zebrafish , Danio rerio , homologous to the mammalian ZP 3 ( ZPC ) , 2022 .

[133]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .

[134]  T. Schultz,et al.  Frog Embryo Teratogenesis Assay: Xenopus (FETAX) — A Short-Term Assay Applicable to Complex Environmental Mixtures , 1983 .

[135]  A. Schweitzer Civilization and ethics , 1929 .