Optimization of light trapping in ultrathin nonhomogeneous CuIn1-ξGaξSe2 solar cell backed by 1D periodically corrugated backreflector

We studied the optimization of an ultrathin CuIn1-ξGaξSe2 (CIGS) solar cell with a nonhomogeneous CIGS absorber layer and backed by a 1D metallic periodically corrugated back-reflector (PCBR) with a rectangular profile. Nonhomogeneity in the CIGS absorber layer was modeled through either a sinusoidal or a linear bandgap variation along the thickness direction. The maximum power density for the AM1.5G spectrum was determined from the spectrum of the useful solar absorptance computed using the rigorous coupled-wave approach. Ultrathin solar cells with optimized PCBR and homogenous bandgap depending on the thickness of the CIGS layer were found to deliver the best photonic absorption characteristics. The open-circuit voltage, efficiency, and fill factor were calculated for the optimal designs using values of the reverse-saturation current density, ideality factor, and the series resistance density obtained from experimental results. The overall trend is that the effect of the PCBR becomes less prominent as the thickness of the CIGS absorber layer increases. Higher efficiency and fill factor can be achieved with a solar cell containing as 400-nm-thick CIGS layer compared to the conventional solar cell with a 2200-nm-thick CIGS layer.

[1]  Alberto Salleo,et al.  Light trapping in thin-film silicon solar cells with submicron surface texture. , 2009, Optics express.

[2]  Martina Schmid,et al.  Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. , 2015, ACS nano.

[3]  Martina Schmid,et al.  Review on light management by nanostructures in chalcopyrite solar cells , 2017 .

[4]  N. Anttu,et al.  Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling , 2016, Nanotechnology.

[5]  T. Gaylord,et al.  Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings , 1987 .

[6]  John A. Woollam,et al.  Modeling AlxGa1−xAs optical constants as functions of composition , 1990 .

[7]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[8]  Tom G. Mackay,et al.  Enhanced efficiency of Schottky-barrier solar cell with periodically nonhomogeneous indium gallium nitride layer , 2017 .

[9]  Stephen J. Fonash,et al.  太阳电池器件物理 = Solar cell device physics , 1982 .

[10]  A. Lakhtakia,et al.  Electromagnetic Surface Waves: A Modern Perspective , 2013 .

[11]  R. Collins,et al.  Optimization of anti-reflective coatings for CIGS solar cells via real time spectroscopic ellipsometry , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[12]  Akhlesh Lakhtakia,et al.  Enhancement of light absorption efficiency of amorphous-silicon thin-film tandem solar cell due to multiple surface-plasmon-polariton waves in the near-infrared spectral regime* , 2013 .

[13]  S. Niki,et al.  Optical constants of Cu(In, Ga)Se2 for arbitrary Cu and Ga compositions , 2015 .

[14]  Akhlesh Lakhtakia,et al.  On optical-absorption peaks in a nonhomogeneous dielectric material over a two-dimensional metallic surface-relief grating , 2017, NanoScience + Engineering.

[15]  T. Mayer,et al.  Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating , 2015 .

[16]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[17]  M. J. Dodge,et al.  Refractive properties of magnesium fluoride. , 1984, Applied optics.

[18]  C. Ballif,et al.  Excitation of guided-mode resonances in thin film silicon solar cells , 2011 .

[19]  I. Luque-Heredia,et al.  The Sun Tracker in Concentrator Photovoltaics , 2012 .

[20]  Gerald Earle Jellison,et al.  Erratum: ‘‘Parameterization of the optical functions of amorphous materials in the interband region’’ [Appl. Phys. Lett. 69, 371 (1996)] , 1996 .

[21]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[22]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[23]  Akhlesh Lakhtakia,et al.  Optimization approach for optical absorption in three-dimensional structures including solar cells , 2018, 1808.01312.

[24]  A. De Vos,et al.  On some thermodynamic aspects of photovoltaic solar energy conversion , 1995 .

[25]  A. Lakhtakia,et al.  Nanotechnology: A Crash Course , 2010 .

[26]  G. R. Hadley,et al.  Optical Waveguide Theory and Numerical Modelling , 2004 .

[27]  N. Ehrmann,et al.  Ellipsometric studies on ZnO:Al thin films: Refinement of dispersion theories , 2010 .

[28]  D. Flandre,et al.  Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells , 2014, Progress in photovoltaics.

[29]  Tom G. Mackay,et al.  Combined optical–electrical finite-element simulations of thin-film solar cells with homogeneous and nonhomogeneous intrinsic layers , 2016 .

[30]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[31]  Mark Winskel,et al.  Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity , 2012 .

[32]  P. Lalanne,et al.  Light Trapping in Ultrathin CIGS Solar Cells with Nanostructured Back Mirrors , 2017, IEEE Journal of Photovoltaics.

[33]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[34]  David W. Lane,et al.  Optical Design and Fabrication of Fully Sputtered CdTe/CdS Solar Cells , 2011 .

[35]  Robert Magnusson,et al.  Light management through guided-mode resonances in thin-film silicon solar cells , 2014 .

[36]  Akhlesh Lakhtakia,et al.  On optical-absorption peaks in a nonhomogeneous thin-film solar cell with a two-dimensional periodically corrugated metallic backreflector , 2018 .

[37]  J. Sites,et al.  Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells , 2005 .