Functions with average smoothness: structure, algorithms, and learning
暂无分享,去创建一个
Lee-Ad Gottlieb | Aryeh Kontorovich | Yair Ashlagi | A. Kontorovich | Lee-Ad Gottlieb | Yair Ashlagi
[1] Aryeh Kontorovich,et al. Learning discrete distributions with infinite support , 2020, NeurIPS.
[2] A. Kontorovich,et al. Fast and Bayes-consistent nearest neighbors , 2019, AISTATS.
[3] Aryeh Kontorovich,et al. Universal Bayes Consistency in Metric Spaces , 2019, 2020 Information Theory and Applications Workshop (ITA).
[4] Martin J. Wainwright,et al. High-Dimensional Statistics , 2019 .
[5] Yin Tat Lee,et al. Solving linear programs in the current matrix multiplication time , 2018, STOC.
[6] Roman Vershynin,et al. High-Dimensional Probability , 2018 .
[7] Prerona Dutta,et al. Covering numbers for bounded variation functions , 2018, Journal of Mathematical Analysis and Applications.
[8] Lee-Ad Gottlieb,et al. Near-Optimal Sample Compression for Nearest Neighbors , 2014, IEEE Transactions on Information Theory.
[9] Lee-Ad Gottlieb,et al. Efficient Regression in Metric Spaces via Approximate Lipschitz Extension , 2011, IEEE Transactions on Information Theory.
[10] Pasin Manurangsi,et al. Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph , 2016, STOC.
[11] Pavel Shvartsman,et al. Whitney-type extension theorems for jets generated by Sobolev functions , 2016, 1607.01660.
[12] Kinjal Basu,et al. Transformations and Hardy-Krause Variation , 2015, SIAM J. Numer. Anal..
[13] Lee-Ad Gottlieb,et al. Adaptive metric dimensionality reduction , 2013, Theor. Comput. Sci..
[14] L. Ambrosio,et al. Sobolev and bounded variation functions on metric measure spaces , 2014 .
[15] Sanjoy Dasgupta,et al. Rates of Convergence for Nearest Neighbor Classification , 2014, NIPS.
[16] Lee-Ad Gottlieb,et al. Efficient Classification for Metric Data , 2014, IEEE Trans. Inf. Theory.
[17] N. Merentes,et al. Bounded Variation and Around , 2013 .
[18] Vikas K. Garg,et al. Adaptivity to Local Smoothness and Dimension in Kernel Regression , 2013, NIPS.
[19] Luigi Ambrosio,et al. Lectures on analysis in metric spaces , 2013 .
[20] D. Berend,et al. A sharp estimate of the binomial mean absolute deviation with applications , 2013 .
[21] Christos Koufogiannakis,et al. A Nearly Linear-Time PTAS for Explicit Fractional Packing and Covering Linear Programs , 2013, Algorithmica.
[22] Ruth Urner,et al. Probabilistic Lipschitzness A niceness assumption for deterministic labels , 2013 .
[23] Sanjoy Dasgupta,et al. A tree-based regressor that adapts to intrinsic dimension , 2012, J. Comput. Syst. Sci..
[24] Ameet Talwalkar,et al. Foundations of Machine Learning , 2012, Adaptive computation and machine learning.
[25] Samory Kpotufe,et al. k-NN Regression Adapts to Local Intrinsic Dimension , 2011, NIPS.
[26] Averaged modulus of continuity and bracket compactness , 2010 .
[27] Alessandro Panconesi,et al. Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .
[28] Adam M. Oberman. An explicit solution of the Lipschitz extension problem , 2008 .
[29] R. Nickl,et al. Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov- and Sobolev-Type , 2007 .
[30] Richard Cole,et al. Searching dynamic point sets in spaces with bounded doubling dimension , 2006, STOC '06.
[31] Y. Peres,et al. Tug-of-war and the infinity Laplacian , 2006, math/0605002.
[32] Sariel Har-Peled,et al. Fast Construction of Nets in Low-Dimensional Metrics and Their Applications , 2004, SIAM J. Comput..
[33] Robert Krauthgamer,et al. Navigating nets: simple algorithms for proximity search , 2004, SODA '04.
[34] Philip M. Long. Efficient algorithms for learning functions with bounded variation , 2004, Inf. Comput..
[35] A. Tsybakov,et al. Introduction à l'estimation non-paramétrique , 2003 .
[36] S. Mendelson,et al. Entropy and the combinatorial dimension , 2002, math/0203275.
[37] Petri Juutinen,et al. ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS ON A METRIC SPACE , 2002 .
[38] E. Berger. UNIFORM CENTRAL LIMIT THEOREMS (Cambridge Studies in Advanced Mathematics 63) By R. M. D UDLEY : 436pp., £55.00, ISBN 0-521-46102-2 (Cambridge University Press, 1999). , 2001 .
[39] A. W. van der Vaart,et al. Uniform Central Limit Theorems , 2001 .
[40] J. Heinonen. Lectures on Analysis on Metric Spaces , 2000 .
[41] E. Mammen,et al. Smooth Discrimination Analysis , 1999 .
[42] Peter L. Bartlett,et al. Neural Network Learning - Theoretical Foundations , 1999 .
[43] John Shawe-Taylor,et al. Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.
[44] I. Johnstone,et al. Minimax estimation via wavelet shrinkage , 1998 .
[45] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[46] Sanjeev R. Kulkarni,et al. Covering numbers for real-valued function classes , 1997, IEEE Trans. Inf. Theory.
[47] H. Balsters,et al. Learnability with respect to fixed distributions , 1991 .
[48] J. B. G. Frenk,et al. Heuristic for the 0-1 Min-Knapsack Problem , 1991, Acta Cybern..
[49] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[50] Alon Itai,et al. Learnability with Respect to Fixed Distributions , 1991, Theor. Comput. Sci..
[51] B. Sendov,et al. The averaged moduli of smoothness , 1988 .
[52] E. Giné,et al. Some Limit Theorems for Empirical Processes , 1984 .
[53] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[54] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[55] E. J. McShane,et al. Extension of range of functions , 1934 .
[56] H. Whitney. Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .