Learned Convolutional Sparse Coding

We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dictionary (CD), and producing an approximate convolutional sparse code (CSC) over the learned dictionary. We trained the model to minimize reconstruction loss via gradient decent with back-propagation and have achieved competitve results to KSVD image denoising and to leading CSC methods in image inpainting requiring only a small fraction of their runtime.

[1]  Yonina C. Eldar,et al.  Tradeoffs Between Convergence Speed and Reconstruction Accuracy in Inverse Problems , 2016, IEEE Transactions on Signal Processing.

[2]  Joan Bruna,et al.  Adaptive Acceleration of Sparse Coding via Matrix Factorization , 2016 .

[3]  Zhou Wang,et al.  Multiscale structural similarity for image quality assessment , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[4]  Brendt Wohlberg,et al.  Efficient convolutional sparse coding , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Guillermo Sapiro,et al.  Learning Efficient Sparse and Low Rank Models , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Simon Lucey,et al.  Optimization Methods for Convolutional Sparse Coding , 2014, ArXiv.

[8]  Brendt Wohlberg,et al.  Convolutional Dictionary Learning: A Comparative Review and New Algorithms , 2017, IEEE Transactions on Computational Imaging.

[9]  Brendt Wohlberg,et al.  Boundary handling for convolutional sparse representations , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[10]  Jan Kautz,et al.  Loss Functions for Image Restoration With Neural Networks , 2017, IEEE Transactions on Computational Imaging.

[11]  Anders P. Eriksson,et al.  Fast Convolutional Sparse Coding , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[13]  Thomas S. Huang,et al.  Deep Networks for Image Super-Resolution with Sparse Prior , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[14]  James T. Kwok,et al.  Online Convolutional Sparse Coding , 2017, ArXiv.

[15]  Yann LeCun,et al.  Discriminative Recurrent Sparse Auto-Encoders , 2013, ICLR.

[16]  Lei Zhang,et al.  Convolutional Sparse Coding for Image Super-Resolution , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[17]  Brendt Wohlberg,et al.  Convolutional Dictionary Learning , 2017, Computer Vision.

[18]  E. Cachan Adaptive Acceleration of Sparse Coding via Matrix Factorization , 2016 .

[19]  Gordon Wetzstein,et al.  Consensus Convolutional Sparse Coding , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[20]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .

[21]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[22]  Gordon Wetzstein,et al.  Fast and flexible convolutional sparse coding , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Michael Elad,et al.  Convolutional Dictionary Learning via Local Processing , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[24]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[25]  Yann LeCun,et al.  Learning Fast Approximations of Sparse Coding , 2010, ICML.

[26]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.