Radiative heat transfer in plastic welding process

Abstract This paper deals with a novel CO 2 laser plastic welding procedure developed from the point of view of heat transfer containing simultaneous radiation and conduction processes and also gives a brief review of plastic welding development to date. The principle and features are shown by both the experiments using CO 2 laser as a radiation source and numerical simulation considering heat transfer phenomena in simultaneous radiation and conduction in welding process. The feasibility of the proposed procedure is confirmed by applying the overlapped same plastic films with combination of infrared radiation absorbing heating and thermal diffusion cooling processes. A solid material transparent to infrared radiation with a high thermal diffusivity is used as a heat sink in contact with the irradiated surface of overlapped thermoplastics during radiation heating. The procedure is able to achieve both high welding strength and excellent surface appearance without causing surface thermal damage as often suffered in conventional direct infrared radiation welding process. In addition, pigmentation in welding material to increase absorption of radiation is unnecessary for this method.