Advances and opportunities at the interface between microbial bioenergy and nanotechnology

In this review, we highlight many recent developments in nanotechnology of critical relevance to microbial bioenergy synthesis. Nanoparticles, nanotubes, nanofibres, and nanoporous materials, are each being utilised in powerful ways as tools for feedstock processing, genetic engineering, and biofuel harvesting, as well as in bioelectrochemical systems. As materials and techniques continue to mature, nanomaterials will become a truly integral part of the bioenergy sector. Sustainable bioenergy production will ultimately be achieved through interdisciplinary efforts that continue to bridge the gap between these traditionally distinct fields of study. Dans cette etude, nous avons presente plusieurs nouveautes en matiere de nanotechnologie qui sont cruciales pour la synthese bioenergetique microbienne. Les nanoparticules, les nanotubes, les nanofibres et les materiaux nanoporeux servent efficacement d'outils pour le traitement des produits de depart, le genie genetique, les biocarburants, ainsi que pour les systemes bioelectrochimiques. Avec le developpement des materiaux et des techniques, les nanomateriaux feront partie integrante du secteur des bioenergies. On pourra atteindre une production bioenergetique durable grâce a des efforts pluridisciplinaires qui permettent de combler le fosse existant entre ces domaines d'etude traditionnellement differents.

[1]  Willy Verstraete,et al.  Minimizing losses in bio-electrochemical systems: the road to applications , 2008, Applied Microbiology and Biotechnology.

[2]  Kevin M. Smith,et al.  Metabolic engineering of Escherichia coli for 1-butanol production. , 2008, Metabolic engineering.

[3]  D. T. Jones,et al.  Acetone-butanol fermentation revisited. , 1986, Microbiological reviews.

[4]  W. Pompe,et al.  Biocers: ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development , 2004 .

[5]  K. Demnerova,et al.  Encapsulation of Microbial Cells into Silica Gel , 1998 .

[6]  Jungbae Kim,et al.  Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres , 2005, Nanotechnology.

[7]  A J J Straathof,et al.  Auxiliary Phase Guidelines for Microbial Biotransformations of Toxic Substrate into Toxic Product , 2003, Biotechnology progress.

[8]  Yuehe Lin,et al.  MICROPOROUS INORGANIC MEMBRANES , 2000 .

[9]  T. Kasuya,et al.  Nanoparticles for human liver-specific drug and gene delivery systems: in vitro and in vivo advances , 2009, Expert opinion on drug delivery.

[10]  Yulong Ding,et al.  Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) , 2007 .

[11]  J. Falconer,et al.  Measurements of diffusion through a zeolite membrane using isotopic-transient pervaporation , 2004 .

[12]  J. Caro,et al.  Zeolite membranes – Recent developments and progress , 2008 .

[13]  K. Howard Delivery of RNA interference therapeutics using polycation-based nanoparticles. , 2009, Advanced drug delivery reviews.

[14]  H. Jia,et al.  Enabling multienzyme biocatalysis using nanoporous materials , 2004, Biotechnology and bioengineering.

[15]  P. Davis,et al.  Vectors for airway gene delivery , 2007, The AAPS Journal.

[16]  E. Malchiodi,et al.  Efficient preservation in a silicon oxide matrix of Escherichia coli, producer of recombinant proteins , 2005, Applied Microbiology and Biotechnology.

[17]  George Georgiou,et al.  Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires , 2004, Science.

[18]  E. Hall,et al.  Immobilisation of photosynthetic cells based on film-forming emulsion polymers , 1994 .

[19]  Mahesh Bule,et al.  Extracellular Biosynthesis of Gold Nanoparticles using Aspergillus niger – its Characterization and Stability , 2009 .

[20]  N. C. Price,et al.  Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  Y. Hsieh,et al.  Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes , 2008 .

[22]  Jungbae Kim,et al.  Single-Enzyme Nanoparticles Armored by a Nanometer-Scale Organic/Inorganic Network , 2003 .

[23]  Alptekin Aksan,et al.  Painting and Printing Living Bacteria: Engineering Nanoporous Biocatalytic Coatings to Preserve Microbial Viability and Intensify Reactivity , 2007, Biotechnology progress.

[24]  Jae Hyun Kim,et al.  β-Glucosidase coating on polymer nanofibers for improved cellulosic ethanol production , 2010, Bioprocess and biosystems engineering.

[25]  S. Junne,et al.  Antisense RNA Downregulation of Coenzyme A Transferase Combined with Alcohol-Aldehyde Dehydrogenase Overexpression Leads to Predominantly Alcohologenic Clostridium acetobutylicum Fermentations , 2003, Journal of bacteriology.

[26]  S. Altman,et al.  Artificial regulation of gene expression in Escherichia coli by RNase P. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[27]  John L. Falconer,et al.  Pervaporation of organic/water mixtures through B-ZSM-5 zeolite membranes on monolith supports , 2003 .

[28]  J. Falconer,et al.  Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes , 2002 .

[29]  René A Rozendal,et al.  Hydrogen production with a microbial biocathode. , 2008, Environmental science & technology.

[30]  M. Galbe,et al.  Process engineering economics of bioethanol production. , 2007, Advances in biochemical engineering/biotechnology.

[31]  S. Aksoy,et al.  Stability of α-amylase immobilized on poly(methyl methacrylate-acrylic acid) microspheres , 1998 .

[32]  Adrie J. J. Straathof,et al.  Assessment of Options for Selective 1-Butanol Recovery from Aqueous Solution , 2009 .

[33]  In S. Kim,et al.  A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen. , 2009, Environmental science & technology.

[34]  Shi Liang,et al.  導電性ナノワイヤーをShewanella oneidensis菌MR‐1菌株その他の微生物が生成する , 2006 .

[35]  Huajiang Huang,et al.  A review of separation technologies in current and future biorefineries , 2008 .

[36]  B. Logan,et al.  Electricity-producing bacterial communities in microbial fuel cells. , 2006, Trends in microbiology.

[37]  F. Fernandes,et al.  Biodiesel Production by Esterification of Oleic Acid with Methanol Using a Water Adsorption Apparatus , 2008 .

[38]  Brenda Little,et al.  Diversifying biological fuel cell designs by use of nanoporous filters. , 2007, Environmental science & technology.

[39]  L. Liang,et al.  Nanoparticle-based delivery system for application of siRNA in vivo. , 2010, Current drug metabolism.

[40]  Miqin Zhang,et al.  Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. , 2010, Advanced drug delivery reviews.

[41]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  L. Blank,et al.  Selected Pseudomonas putida Strains Able To Grow in the Presence of High Butanol Concentrations , 2009, Applied and Environmental Microbiology.

[43]  Richard Bonneau,et al.  De novo prediction of three-dimensional structures for major protein families. , 2002, Journal of molecular biology.

[44]  E. Papoutsakis,et al.  Design of Antisense RNA Constructs for Downregulation of the Acetone Formation Pathway of Clostridium acetobutylicum , 2003, Journal of bacteriology.

[45]  W. Bentley,et al.  Beyond silencing--engineering applications of RNA interference and antisense technology for altering cellular phenotype. , 2008, Current opinion in biotechnology.

[46]  Dadan Kusdiana,et al.  Effects of water on biodiesel fuel production by supercritical methanol treatment. , 2004, Bioresource technology.

[47]  M. Tolmasky,et al.  External Guide Sequences Targeting the aac(6′)-Ib mRNA Induce Inhibition of Amikacin Resistance , 2007, Antimicrobial Agents and Chemotherapy.

[48]  J. Liao,et al.  Metabolic engineering for advanced biofuels production from Escherichia coli. , 2008, Current opinion in biotechnology.

[49]  W. Tan,et al.  Biochemically functionalized silica nanoparticles. , 2001, The Analyst.

[50]  N. Nassif,et al.  Living bacteria in silica gels , 2002, Nature materials.

[51]  George John,et al.  Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. , 2008, Nature materials.

[52]  Richard D. Smith,et al.  Highly stable trypsin‐aggregate coatings on polymer nanofibers for repeated protein digestion , 2009, Proteomics.

[53]  Xiaoyan Yuan,et al.  Immobilization of cellulase using acrylamide grafted acrylonitrile copolymer membranes , 1999 .

[54]  Ping Wang,et al.  Enzyme‐Carrying Polymeric Nanofibers Prepared via Electrospinning for Use as Unique Biocatalysts , 2002, Biotechnology progress.

[55]  L. Ingram,et al.  Ethanol tolerance in bacteria. , 1990, Critical reviews in biotechnology.

[56]  N. Chaniotakis,et al.  Stabilization of enzymes in nanoporous materials for biosensor applications. , 2005, Biosensors & bioelectronics.

[57]  S. Junne,et al.  Transcriptional analysis of product‐concentration driven changes in cellular programs of recombinant Clostridium acetobutylicumstrains , 2003, Biotechnology and bioengineering.

[58]  Lee R. Lynd,et al.  Overview and evaluation of fuel ethanol from cellulosic biomass , 1996 .

[59]  G. Benito,et al.  Selection of adsorbents to be used in an ethanol fermentation process. Adsorption isotherms and kinetics , 1998 .

[60]  S. Nakao,et al.  Ethanol/water transport through silicalite membranes , 1998 .

[61]  B. Rehm,et al.  In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases. , 2005, FEMS microbiology letters.

[62]  V. Colvin The potential environmental impact of engineered nanomaterials , 2003, Nature Biotechnology.

[63]  C. Wyman,et al.  Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. , 2005, Bioresource technology.

[64]  Chiamaka Agbasi-Porter,et al.  Transcription inhibition using oligonucleotide-modified gold nanoparticles. , 2006, Bioconjugate chemistry.

[65]  Leland M. Vane,et al.  A review of pervaporation for product recovery from biomass fermentation processes , 2005 .

[66]  Kiyohide Matsui,et al.  Chemical modification of poly(substituted‐acetylene). VI. Introduction of fluoroalkyl group into poly(1‐trimethylsilyl‐1‐propyne) and the improved ethanol permselectivity at pervaporation , 1991 .

[67]  M. Flickinger,et al.  Activation and regeneration of whole cell biocatalysts: Initial and periodic induction behavior in starved Escherichia coli after immobilization in thin synthetic films , 1996, Biotechnology and bioengineering.

[68]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[69]  Ravi S Kane,et al.  Increasing protein stability through control of the nanoscale environment. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[70]  James C. Liao,et al.  Production of 2-methyl-1-butanol in engineered Escherichia coli , 2008, Applied Microbiology and Biotechnology.

[71]  Dirk Schüler,et al.  Genomics, genetics, and cell biology of magnetosome formation. , 2009, Annual review of microbiology.

[72]  J. Liao,et al.  Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels , 2008, Nature.

[73]  D. Pant,et al.  A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. , 2010, Bioresource technology.

[74]  T. Xia,et al.  Potential health impact of nanoparticles. , 2009, Annual review of public health.

[75]  T. Mehta,et al.  Extracellular electron transfer via microbial nanowires , 2005, Nature.

[76]  Justin C. Biffinger,et al.  Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis , 2009, Biotechnology and bioengineering.

[77]  M. Seleem,et al.  Plasmid-Based System for High-Level Gene Expression and Antisense Gene Knockdown in Bartonella henselae , 2009, Applied and Environmental Microbiology.

[78]  S. Altman,et al.  Disruption of type III secretion in Salmonella enterica serovar Typhimurium by external guide sequences. , 2004, Nucleic acids research.

[79]  Tang Bin,et al.  Selective ethanol extraction from fermentation broth using a silicalite membrane , 2002 .

[80]  J. Livage,et al.  Sol-Gel Entrapment of Escherichia coli , 2000 .

[81]  M. Yoshimoto,et al.  Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. , 2007, Bioresource technology.

[82]  Largus T Angenent,et al.  Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production , 2010, Biotechnology and bioengineering.

[83]  Yujun Wang,et al.  Calcium Ethoxide as a Solid Base Catalyst for the Transesterification of Soybean Oil to Biodiesel , 2008 .

[84]  Justin C. Biffinger,et al.  High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. , 2006, Environmental science & technology.

[85]  S. Altman,et al.  Inhibition of Escherichia coli viability by external guide sequences complementary to two essential genes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[86]  K. Ariga,et al.  Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules , 2006 .

[87]  Wen‐Chien Lee,et al.  Transformation of Escherichia coli mediated by magnetic nanoparticles in pulsed magnetic field , 2006 .

[88]  T. Nakane,et al.  Improvement of ethanol selectivity of silicalite membrane in pervaporation by silicone rubber coating , 2002 .

[89]  Hiroshi Yanagishita,et al.  Production of highly concentrated ethanol in a coupled fermentation/pervaporation process using silicalite membranes , 1997 .

[90]  S. Nakao,et al.  Transport phenomena through intercrystalline and intracrystalline pathways of silicalite zeolite membranes , 2001 .

[91]  C. Slater,et al.  The Effect of Process Parameters on the Pervaporation of Alcohols through Organophilic Membranes , 1992 .

[92]  B. Rehm Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles. , 2007, Current issues in molecular biology.

[93]  David E. Kim,et al.  Sampling bottlenecks in de novo protein structure prediction. , 2009, Journal of molecular biology.

[94]  Vincent M Rotello,et al.  Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Geoffrey Moxley,et al.  Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. , 2008, Journal of agricultural and food chemistry.

[96]  Swapnil Chhabra,et al.  Biofuel alternatives to ethanol: pumping the microbial well. , 2008, Trends in biotechnology.

[97]  Y. Nagase,et al.  Chemical modification of poly(substituted‐acetylene). V. Alkylsilylation of poly(1‐trimethylsilyl‐1‐propyne) and improved liquid separating property at pervaporation , 1991 .

[98]  Ivo F. J. Vankelecom,et al.  INFLUENCE OF ZEOLITES IN PDMS MEMBRANES - PERVAPORATION OF WATER/ALCOHOL MIXTURES , 1995 .

[99]  Krist V. Gernaey,et al.  Assessing reliability of cellulose hydrolysis models to support biofuel process design - Identifiability and uncertainty analysis , 2010, Comput. Chem. Eng..

[100]  V. Saravanan,et al.  Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications , 2010 .

[101]  S. Hart Multifunctional nanocomplexes for gene transfer and gene therapy , 2010, Cell Biology and Toxicology.

[102]  Jungho Hwang,et al.  Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. , 2007, The Science of the total environment.

[103]  T. Nakane,et al.  Mass-production of tubular NaY zeolite membranes for industrial purpose and their application to ethanol dehydration by vapor permeation , 2008 .

[104]  J. Rhee,et al.  Immobilization of glucose oxidase and lactate dehydrogenase onto magnetic nanoparticles for bioprocess monitoring system , 2008 .

[105]  K. Ishihara,et al.  Chemical modification of poly(substituted‐acetylene): II. Pervaporation of ethanol / water mixture through poly(1‐trimethylsilyl‐1‐propyne) / poly(dimethylsiloxane) graft copolymer membrane , 1990 .

[106]  Chad A. Mirkin,et al.  Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation , 2006, Science.

[107]  F. Mizukami,et al.  Separation of ethanol/water mixture by silicalite membrane on pervaporation , 1994 .

[108]  K. Prather,et al.  Engineering alternative butanol production platforms in heterologous bacteria. , 2009, Metabolic engineering.

[109]  Ravi S Kane,et al.  Protein-assisted solubilization of single-walled carbon nanotubes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[110]  L. K. Bowles,et al.  Effects of butanol on Clostridium acetobutylicum , 1985, Applied and environmental microbiology.

[111]  L. Brannon-Peppas,et al.  Nanoparticle and targeted systems for cancer therapy. , 2004, Advanced drug delivery reviews.

[112]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[113]  S. Bhatia,et al.  Membrane separation process—Pervaporation through zeolite membrane , 2008 .

[114]  B. Saville,et al.  Characterization and performance of immobilized amylase and cellulase , 2004, Applied biochemistry and biotechnology.

[115]  James C. Liao,et al.  Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes , 2009, Applied Microbiology and Biotechnology.

[116]  A. Zhu,et al.  Molecular simulation of water/alcohol mixtures' adsorption and diffusion in zeolite 4A membranes. , 2009, The journal of physical chemistry. B.

[117]  J. Dordick,et al.  Unfolding of ribonuclease A on silica nanoparticle surfaces. , 2007, Nano letters.

[118]  K. Furukawa,et al.  Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4 , 2008, Applied Microbiology and Biotechnology.

[119]  Alyssa M. Redding,et al.  Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol , 2008, Microbial cell factories.