The Survey for Ionization in Neutral Gas Galaxies. II. The Star Formation Rate Density of the Local Universe

We derive observed Hα and R-band luminosity densities of an H I-selected sample of nearby galaxies using the SINGG sample to be l = (9.4 ± 1.8) × 1038 h70 ergs s-1 Mpc-3 for Hα and l = (4.4 ± 0.7) × 1037 h70 ergs s-1 Å-1 Mpc-3 in the R band. This R-band luminosity density is approximately 70% of that found by the Sloan Digital Sky Survey. This leads to a local star formation rate density of log(SFR [ℳ☉ yr-1 Mpc-3]) = -1.80(random) ± 0.03(systematic) + log(h70) after applying a mean internal extinction correction of 0.82 mag. The gas cycling time of this sample is found to be tgas = 7.5 Gyr, and the volume-averaged equivalent width of the SINGG galaxies is EW(Hα) = 28.8 Å (21.2 Å without internal dust correction). As with similar surveys, these results imply that SFR(z) decreases drastically from z ~ 1.5 to the present. A comparison of the dynamical masses of the SINGG galaxies evaluated at their optical limits with their stellar and H I masses shows significant evidence of downsizing: the most massive galaxies have a larger fraction of their mass locked up in stars compared with H I, while the opposite is true for less massive galaxies. We show that the application of the Kennicutt star formation law to a galaxy having the median orbital time at the optical limit of this sample results in a star formation rate decay with cosmic time similar to that given by the SFR(z) evolution. This implies that the SFR(z) evolution is primarily due to the secular evolution of galaxies, rather than interactions or mergers. This is consistent with the morphologies predominantly seen in the SINGG sample.

[1]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[2]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[3]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[4]  J. Brinkmann,et al.  The Properties and Luminosity Function of Extremely Low Luminosity Galaxies , 2004, astro-ph/0410164.

[5]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[6]  R. Walterbos,et al.  Star Formation in H I-Selected Galaxies. I. Sample Characteristics , 2004, astro-ph/0406317.

[7]  E. al.,et al.  The HIPASS catalogue - I. Data presentation , 2004, astro-ph/0406384.

[8]  W. K. Huchtmeier,et al.  A Catalog of Neighboring Galaxies , 2004 .

[9]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[10]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[11]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[12]  A. Aragón-Salamanca,et al.  Spatial Analysis of the Hα Emission in the Local Star-forming UCM Galaxies , 2003, astro-ph/0303323.

[13]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[14]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[15]  R. Nichol,et al.  The Luminosity Density of Red Galaxies , 2002, astro-ph/0204436.

[16]  Jessica L. Rosenberg,et al.  The Arecibo Dual-Beam Survey: The H I Mass Function of Galaxies , 2001, astro-ph/0111004.

[17]  M. Fukugita,et al.  Statistical Properties of Bright Galaxies in the Sloan Digital Sky Survey Photometric System , 2001, astro-ph/0105401.

[18]  B. Gibson,et al.  The HI Parkes All Sky Survey: southern observations, calibration and robust imaging , 2001 .

[19]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[20]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[21]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[22]  B. Gibson,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXI. The Cepheid Distance to NGC 1425 , 2000 .

[23]  M. Sullivan,et al.  An ultraviolet-selected galaxy redshift survey -- II. The physical nature of star formation in an enlarged sample , 1999, astro-ph/9910104.

[24]  O. Fèvre,et al.  15 Micron Infrared Space Observatory Observations of the 1415+52 Canada-France Redshift Survey Field: The Cosmic Star Formation Rate as Derived from Deep Ultraviolet, Optical, Mid-Infrared, and Radio Photometry , 1999 .

[25]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: spectral types and luminosity functions , 1999, astro-ph/9903456.

[26]  S. M. Fall,et al.  Cosmic Histories of Stars, Gas, Heavy Elements, and Dust in Galaxies , 1998, astro-ph/9812182.

[27]  S. Serjeant,et al.  The local star formation rate and radio luminosity density , 1998, astro-ph/9808259.

[28]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[29]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[30]  M. Treyer,et al.  An Ultraviolet selected galaxy redshift survey: New estimates of the local star formation rate , 1998, astro-ph/9806056.

[31]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[32]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[33]  M. Fukugita,et al.  The Cosmic Baryon Budget , 1997, astro-ph/9712020.

[34]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[35]  Laurence Tresse,et al.  The Hα Luminosity Function and Star Formation Rate at z ~ 0.2 , 1997, astro-ph/9709240.

[36]  L. Allen,et al.  The global rate and efficiency of star formation in spiral galaxies as a function of morphology and environment , 1996 .

[37]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[38]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[39]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[40]  R. Ekers,et al.  The Parkes 21 cm Multibeam Receiver , 1996, Publications of the Astronomical Society of Australia.

[41]  S. M. Fall,et al.  Cosmic chemical evolution , 1995 .

[42]  A. Aragón-Salamanca,et al.  The Current Star Formation Rate of the Local Universe , 1995, astro-ph/9510061.

[43]  R. Kennicutt,et al.  Past and Future Star Formation in Disk Galaxies , 1994 .

[44]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[45]  M. Dopita,et al.  On the Law of Star Formation in Disk Galaxies , 1994 .

[46]  Nicholas A. Devereux,et al.  A reevaluation of the infrared-radio correlation for spiral galaxies , 1989 .

[47]  M. Fanelli,et al.  Spectral synthesis in the ultraviolet. II. Stellar populations and star formation in blue compact galaxies , 1988 .

[48]  T. Boroson,et al.  OBSERVATIONS OF A COMPLETE SAMPLE OF EMISSION-LINE GALAXIES , 1986 .

[49]  R. Giovanelli,et al.  Neutral hydrogen in isolated galaxies. IV - Results for the Arecibo sample , 1984 .

[50]  M. S. Roberts The neutral hydrogen content of late-type spiral galaxies. , 1962 .

[51]  E. Salpeter The Luminosity function and stellar evolution , 1955 .