Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor

Abstract Multifunctional electronics featuring optical transparency, portability, mechanical flexibility, light-weight and environment-friendly are of great demands for next-generation smart electronics. Memristor represents one of the important chains in next-generation devices as the information computing and storage component. Here, we design the transparent flexible structure based on van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) for a memristor application. The (ANA/muscovite) memristor satisfies all the hardest requirements of a transparent soft device such as optical transparency over 80% in visible light and high performance with a ON/OFF resistance ratio > 105, stable endurance to 103 cycles and long retention time of 105 s. In addition, the ANA/muscovite memristor can work at various bending radii down to 5 mm, a mechanical bending after 1000 cycles at a curvature with a radius of 6.5 mm and a high temperature up to 185 °C, which deliver a pathway for future applications in flexible transparent smart electronics.

[1]  P. Chiu,et al.  Flexible ferroelectric element based on van der Waals heteroepitaxy , 2017, Science Advances.

[2]  Yao-Feng Chang,et al.  Unidirectional threshold resistive switching in Au/NiO/Nb:SrTiO3 devices , 2017 .

[3]  Jodie Noel Vinson Transparent , 2018, Stardust Media.

[4]  Daihua Zhang,et al.  Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. , 2006 .

[5]  Chunya Wang,et al.  Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin , 2017 .

[6]  Keon Jae Lee,et al.  Reliable control of filament formation in resistive memories by self-assembled nanoinsulators derived from a block copolymer. , 2014, ACS nano.

[7]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[8]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[9]  P. Chiu,et al.  Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics , 2016 .

[10]  Pooi See Lee,et al.  Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory. , 2017, ACS nano.

[11]  Jong Yeog Son,et al.  Direct observation of conducting filaments on resistive switching of NiO thin films , 2008 .

[12]  Jun Yeong Seok,et al.  Collective Motion of Conducting Filaments in Pt/n‐Type TiO2/p‐Type NiO/Pt Stacked Resistance Switching Memory , 2011 .

[13]  Yunlong Zi,et al.  All‐Plastic‐Materials Based Self‐Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors , 2016 .

[14]  Jianqi Li,et al.  Built‐In‐Homojunction‐Dominated Intrinsically Rectifying‐Resistive Switching in NiO Nanodots for Selection‐Device‐Free Memory Application , 2017, 1702.05665.

[15]  Daihua Zhang,et al.  Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. , 2006, Nano letters.

[16]  M. K. Hota,et al.  Multistate Resistive Switching Memory for Synaptic Memory Applications , 2016 .

[17]  Jong Yeog Son,et al.  NiO resistive random access memory nanocapacitor array on graphene. , 2010, ACS nano.

[18]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[19]  Xing Dai,et al.  Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors , 2016, ACS photonics.

[20]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[21]  Long-qing Chen,et al.  Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy. , 2017, ACS nano.

[22]  Ying-Hao Chu Van der Waals oxide heteroepitaxy , 2017 .

[23]  Deterministic Role of Concentration Surplus of Cation Vacancy over Anion Vacancy in Bipolar Memristive NiO. , 2016, ACS applied materials & interfaces.

[24]  P. Chiu,et al.  Oxide Heteroepitaxy for Flexible Optoelectronics. , 2016, ACS applied materials & interfaces.

[25]  E. Fortunato,et al.  Solution Combustion Synthesis: Low‐Temperature Processing for p‐Type Cu:NiO Thin Films for Transparent Electronics , 2017, Advanced materials.

[26]  Tianyou Zhai,et al.  A Fully Transparent and Flexible Ultraviolet–Visible Photodetector Based on Controlled Electrospun ZnO‐CdO Heterojunction Nanofiber Arrays , 2015 .

[27]  Liang Fang,et al.  Transparent flexible resistive random access memory fabricated at room temperature , 2009 .

[28]  Hossam Haick,et al.  Flexible sensors based on nanoparticles. , 2013, ACS nano.

[29]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[30]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[31]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[32]  Van Dung Hoang,et al.  TiO2 thin film based transparent flexible resistive switching random access memory , 2016 .

[33]  Hongli Zhu,et al.  Highly transparent and flexible nanopaper transistors. , 2013, ACS nano.

[34]  Yugandhar Bitla,et al.  MICAtronics: A new platform for flexible X-tronics , 2017 .

[35]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[36]  Silver Nanowire/Colorless-Polyimide Composite Electrode: Application in Flexible and Transparent Resistive Switching Memory , 2017, Scientific Reports.

[37]  Ankanahalli Shankaregowda Smitha,et al.  Roll‐to‐Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator , 2015, Advanced materials.

[38]  Shahriar Mirabbasi,et al.  Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array , 2017, Science Advances.

[39]  Shui-Tong Lee,et al.  High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes. , 2014, ACS nano.

[40]  Jong-Hyun Ahn,et al.  Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. , 2016, Nano letters.

[41]  Muhammad Mustafa Hussain,et al.  Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics , 2015, ArXiv.

[42]  K. Choi,et al.  Transparent and Flexible Resistive Random Access Memory Based on Al2O3 Film With Multilayer Electrodes , 2017, IEEE Transactions on Electron Devices.

[43]  Myunghwan Byun,et al.  Flexible Crossbar‐Structured Resistive Memory Arrays on Plastic Substrates via Inorganic‐Based Laser Lift‐Off , 2014, Advanced materials.

[44]  Yuchao Yang,et al.  Nanoscale resistive switching devices: mechanisms and modeling. , 2013, Nanoscale.

[45]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[46]  Po-Wen Chiu,et al.  van der Waal Epitaxy of Flexible and Transparent VO2 Film on Muscovite , 2016 .

[47]  Jun Liu,et al.  Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. , 2007, Nature nanotechnology.

[48]  G. Yang,et al.  Growth of centimeter-scale high-quality In2Se3 films for transparent, flexible and high performance photodetectors , 2016 .

[49]  Jea-Gun Park,et al.  Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier. , 2009, Nano letters.