On goal programming formulations of the reference point method

This paper discusses connections between the multi-criteria techniques of goal programming (GP) and the reference point method (RPM). Both approaches use a certain target point in the criterion (outcome) space as a key element to model decision maker preferences. Therefore, RPM can be expressed, similarly to GP, in the modelling framework of deviational variables. The paper gives a systematic survey and analysis of the lexicographic GP models of RPM. The corresponding preference models are formalised and analysed with respect to target values interpretations as well as the Pareto efficiency of their solutions. The properties of equity among the individual achievements of solutions are also analysed with respect to the Rawlsian principle of justice.

[1]  H. Simon,et al.  Models of Man. , 1957 .

[2]  K. B. Williams,et al.  Management Models and Industrial Applications of Linear Programming , 1962 .

[3]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[4]  Andrzej P. Wierzbick Basic properties of scalarizmg functionals for multiobjective optimization , 1977 .

[5]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[6]  S. M. Junaid Zaidi,et al.  Linear Programming in Single and Multiple Objective Systems , 1982 .

[7]  James P. Ignizio,et al.  Linear Programming in Single- and Multiple-Objective Systems , 1984 .

[8]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[9]  P. Kline Models of man , 1986, Nature.

[10]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[11]  Andrzej P. Wierzbicki,et al.  Aspiration Based Decision Support Systems: Theory, Software and Applications , 1989 .

[12]  Carlos Romero,et al.  A theorem connecting utility function optimization and compromise programming , 1991, Oper. Res. Lett..

[13]  Philippe Vincke,et al.  Multicriteria Decision-Aid , 1992 .

[14]  Włodzimierz Ogryczak,et al.  Aspiration/Reservation-Based Decision Support—a Step Beyond Goal Programming , 1992 .

[15]  J. Oviedo,et al.  Lexicographic optimality in the multiple objective linear programming: The nucleolar solution , 1992 .

[16]  Philippe Vincke,et al.  Multicriteria Decision-aid , 1993 .

[17]  Wlodzimierz Ogryczak,et al.  A Goal Programming model of the reference point method , 1994, Ann. Oper. Res..

[18]  Ignacy Kaliszewski,et al.  Quantitative Pareto Analysis by Cone Separation Technique , 1994 .

[19]  P. Korhonen,et al.  Using Lexicographic Parametric Programming for Searching a Non‐dominated Set in Multiple‐Objective Linear Programming , 1996 .

[20]  Serge-Christophe Kolm,et al.  The theory of justice , 1996 .

[21]  Włodzimierz Ogryczak,et al.  Preemptive Reference Point Method , 1997 .

[22]  Hirotaka Nakayama,et al.  Some Remarks on Trade-off Analysis in Multi-objective Programming , 1997 .

[23]  Mehrdad Tamiz,et al.  Goal programming, compromise programming and reference point method formulations: linkages and utility interpretations , 1998, J. Oper. Res. Soc..

[24]  Michael M. Kostreva,et al.  Linear optimization with multiple equitable criteria , 1999, RAIRO Oper. Res..

[25]  Marek Makowski,et al.  Interactive specification and analysis of aspiration-based preferences , 2000, Eur. J. Oper. Res..

[26]  Marek Makowski,et al.  Model-Based Decision Support Methodology with Environmental Applications , 2000 .

[27]  Włodzimierz Ogryczak Comments on Romero C, Tamiz M and Jones DF (1998). Goal programming, compromise programming and reference point method formulations: linkages and utility interpretations , 2001, J. Oper. Res. Soc..