Calibration and Attitude Determination with Redundant Inertial Measurement Units

A calibration filter is developed for redundant inertial measurement units, which are inertial measurement units that have more than three sense axes. It is shown that for a Kalman filter based on an attitude measurement model and an attitude kinematics model in the “model replacement mode,” a linear combination of the calibration parameters is not observable and therefore cannot be estimated. This observability problem is not related to dynamic observability, which requires calibration maneuvers. A null-space measurement equation, together with the attitude measurement and kinematics models, provides complete observability so that all calibration parameters can be estimated. Estimator performance without and with the null-space measurement update is demonstrated via simulation results.

[1]  Mark E. Pittelkau,et al.  RIMU Misalignment Vector Decomposition , 2004 .

[2]  K. C. Daly,et al.  Generalized Likelihood Test for FDI in Redundant Sensor Configurations , 1979 .

[3]  Itzhack Y. Bar-Itzhack,et al.  In-Space Calibration of a Skewed Gyro Quadruplet , 2002 .

[4]  Mark E. Pittelkau,et al.  An analysis of the quaternion attitude determination filter , 2003 .

[5]  M. S. Radomski On-Orbit Calibration of Redundant Spacecraft Gyros by Optimal Reduction to Three Axes , 2001 .

[6]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[7]  Itzhack Y. Bar-Itzhack,et al.  In-Space Calibration of a Gyro Quadruplet , 2001 .

[8]  F. A. Evans,et al.  Experimental strapdown redundant sensor inertial navigation system , 1970 .

[9]  M. Pittelkau Rotation Vector in Attitude Estimation , 2003 .

[10]  A. Pejsa Optimum orientation and accuracy of redundant sensor arrays , 1971 .

[11]  Song Hua,et al.  An approach to sensor fault diagnosis based on fully-decoupled parity equation and parameter estimation , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[12]  F. Landis Markley,et al.  Attitude Estimation or Quaternion Estimation , 2003 .

[13]  James Harrison,et al.  Evaluating Sensor Orientations for Navigation Performance and Failure Detection , 1977, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Mark E. Pittelkau,et al.  Kalman Filtering for Spacecraft System Alignment Calibration , 2001 .

[15]  John Deyst,et al.  In-Flight Parity Vector Compensation for FDI , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[16]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[17]  Mark E. Pittelkau,et al.  Cascaded and decoupled RIMU calibration filters , 2006 .

[18]  Scott R. Davis,et al.  Attitude sensor calibration for the ocean topography experiment satellite , 1993, Defense, Security, and Sensing.

[19]  Steven Ray Hall Parity vector compensation for FDI , 1981 .

[20]  Quang Lam,et al.  Analysis and Design of a Fifteen State Stellar Inertial Attitude Determination System , 2003 .

[21]  Hugh F. Durrant-Whyte,et al.  A Low-Cost, Redundant Inertial Measurement Unit for Unmanned Air Vehicles , 2000, Int. J. Robotics Res..

[22]  J. C. Wilcox Competitive Evaluation of Failure Detection Algorithms for Strapdown Redundant Inertial Instruments , 1974 .

[23]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[24]  M. Pittelkau EVERYTHING IS RELATIVE IN SYSTEM ALIGNMENT CALIBRATION , 2000 .

[25]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[26]  Mark E. Pittelkau Everything Is Relative in Spacecraft System Alignment Calibration , 2002 .

[27]  Jerold P. Gilmore,et al.  A Redundant Strapdown Inertial Reference Unit (SIRU) , 1972 .