Decision Fusion for Multimodal Biometrics Using Social Network Analysis

This paper presents for the first time decision fusion for multimodal biometric system using social network analysis (SNA). The main challenge in the design of biometric systems, at present, lies in unavailability of high-quality data to ensure consistently high recognition results. Resorting to multimodal biometric partially solves the problem, however, issues with dimensionality reduction, classifier selection, and aggregated decision making remain. The presented methodology successfully overcomes the problem through employing novel decision fusion using SNA. While several types of feature extractors can be used to reduce the dimension and identify significant features, we chose the Fisher Linear Discriminant Analysis as one of the most efficient methods. Social networks are constructed based on similarity and correlation of features among the classes. The final classification result is generated based on the two levels of decision fusion methods. At the first level, individual biometrics (face or ear or signature) are classified using matching score methodology. SNA is used to reinforce the confidence level of the classifier to reduce the error rate. In the second level, outcomes of classification based on individual biometrics are fused together to obtain the final decision.

[1]  Marina L. Gavrilova,et al.  Multimodal Biometric System Using Rank-Level Fusion Approach , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Lionel Marraffa,et al.  Parametric study of thermal and chemical nonequilibrium nozzle flow , 1989 .

[3]  Lionel Marraffa,et al.  PARAMETRIC STUDY OF THERMAL AND CHEMICAL NONEQUILIBRIUM NOZZLE FLOW , 1991 .

[4]  R. Luce,et al.  A method of matrix analysis of group structure , 1949, Psychometrika.

[5]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[6]  Phillip Bonacich,et al.  Some unique properties of eigenvector centrality , 2007, Soc. Networks.

[7]  D. Sade,et al.  Sociometrics of Macaca Mulatta III: n-path centrality in grooming networks , 1989 .

[8]  Yingxu Wang,et al.  A novel fuzzy multimodal information fusion technology for human biometric traits identification , 2011, IEEE 10th International Conference on Cognitive Informatics and Cognitive Computing (ICCI-CC'11).

[9]  Sharath Pankanti,et al.  Biometric Recognition: Security and Privacy Concerns , 2003, IEEE Secur. Priv..

[10]  Zhi-chun Mu,et al.  Ear Recognition based on 2D Images , 2007, 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems.

[11]  Gian Luca Marcialis,et al.  Fingerprint verification by fusion of optical and capacitive sensors , 2004, Pattern Recognit. Lett..

[12]  Marina L. Gavrilova,et al.  Current Trends in Multimodal Biometric System—Rank Level Fusion , 2011 .

[13]  Arun Ross,et al.  Feature level fusion of hand and face biometrics , 2005, SPIE Defense + Commercial Sensing.

[14]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[15]  Marina L. Gavrilova,et al.  Artimetrics: Biometrics for Artificial Entities , 2012, IEEE Robotics & Automation Magazine.

[16]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[17]  Dorothea Wagner,et al.  Approximating Clustering Coefficient and Transitivity , 2005, J. Graph Algorithms Appl..

[18]  Martin G. Everett,et al.  A Graph-theoretic perspective on centrality , 2006, Soc. Networks.

[19]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[20]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[21]  Sudeep Sarkar,et al.  Comparison and Combination of Ear and Face Images in Appearance-Based Biometrics , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[23]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[24]  Julian Fiérrez,et al.  A Comparative Evaluation of Fusion Strategies for Multimodal Biometric Verification , 2003, AVBPA.

[25]  M. A. Carreira-Perpinan,et al.  Compression neural networks for feature extraction: Application to human recognition from ear images , 1995 .

[26]  Marina L. Gavrilova,et al.  On-demand chaotic neural network for broadcast scheduling problem , 2010, The Journal of Supercomputing.

[27]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[28]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[29]  Arun Ross,et al.  Fingerprint mosaicking , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[30]  Trevor Darrell,et al.  Nearest-Neighbor Methods in Learning and Vision , 2008, IEEE Trans. Neural Networks.

[31]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[32]  P. Holland,et al.  Transitivity in Structural Models of Small Groups , 1971 .

[33]  Robert Frischholz,et al.  BioID: A Multimodal Biometric Identification System , 2000, Computer.

[34]  A. Ross,et al.  Level Fusion Using Hand and Face Biometrics , 2005 .

[35]  Arun Ross,et al.  Handbook of Multibiometrics , 2006, The Kluwer international series on biometrics.

[36]  Anil K. Jain,et al.  Integrating Faces and Fingerprints for Personal Identification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  P. Fränti,et al.  Fusion of Spectral Feature Sets for Accurate Speaker Identification , 2004 .

[38]  H.M. Wechsler,et al.  Digital image processing, 2nd ed. , 1981, Proceedings of the IEEE.

[39]  Arun Ross,et al.  Information fusion in biometrics , 2003, Pattern Recognit. Lett..

[40]  Ulrik Brandes,et al.  Centrality Estimation in Large Networks , 2007, Int. J. Bifurc. Chaos.

[41]  Tony R. Martinez,et al.  The general inefficiency of batch training for gradient descent learning , 2003, Neural Networks.

[42]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[43]  Kuldip K. Paliwal,et al.  Polynomial features for robust face authentication , 2002, Proceedings. International Conference on Image Processing.

[44]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.