From trees to barcodes and back again II: Combinatorial and probabilistic aspects of a topological inverse problem
暂无分享,去创建一个
Lida Kanari | Kathryn Hess | Ad'elie Garin | Justin Curry | Jordan DeSha | Brendan Mallery | Lida Kanari | K. Hess | J. Curry | A. Garin | B. Mallery | Jordan DeSha
[1] On Refining Partitions , 1975 .
[2] Louis J. Billera,et al. Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..
[3] Henry Markram,et al. Objective Morphological Classification of Neocortical Pyramidal Cells , 2019, Cerebral cortex.
[4] Brittany Terese Fasy,et al. Moduli spaces of morse functions for persistence , 2019, Journal of Applied and Computational Topology.
[5] Lida Kanari,et al. Computational synthesis of cortical dendritic morphologies , 2020, bioRxiv.
[6] Lida Kanari,et al. From trees to barcodes and back again: theoretical and statistical perspectives , 2020, Algorithms.
[7] Osman Berat Okutan,et al. Decorated merge trees for persistent topology , 2021, Journal of Applied and Computational Topology.
[8] Rachel Levanger,et al. Persistent homology and Euler integral transforms , 2018, J. Appl. Comput. Topol..
[9] R. Forman. Morse Theory for Cell Complexes , 1998 .
[10] Paul Bendich,et al. From Geometry to Topology: Inverse Theorems for Distributed Persistence , 2021, ArXiv.
[11] Henry Markram,et al. A Topological Representation of Branching Neuronal Morphologies , 2017, Neuroinformatics.
[12] W. Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.
[13] I. Kondor,et al. Group theoretical methods in machine learning , 2008 .
[14] Gunther H. Weber,et al. Interleaving Distance between Merge Trees , 2013 .
[15] Joseph Felsenstein,et al. The number of evolutionary trees , 1978 .
[16] Marcio Gameiro,et al. Continuation of Point Clouds via Persistence Diagrams , 2015, ArXiv.
[17] Konstantin Mischaikow,et al. Contractibility of a persistence map preimage , 2018, Journal of Applied and Computational Topology.
[18] Paul H. Edelman. The Bruhat order of the symmetric group is lexicographically shellable , 1981 .
[19] Sayan Mukherjee,et al. How Many Directions Determine a Shape and other Sufficiency Results for Two Topological Transforms , 2018, Transactions of the American Mathematical Society, Series B.
[20] Lin Yan,et al. A Structural Average of Labeled Merge Trees for Uncertainty Visualization , 2019, IEEE Transactions on Visualization and Computer Graphics.
[21] Ulrike Tillmann,et al. The Fiber of Persistent Homology for simplicial complexes , 2021 .
[22] Steve Oudot,et al. Inverse Problems in Topological Persistence , 2018, Topological Data Analysis.
[23] Steve Oudot,et al. Barcode embeddings for metric graphs , 2021, Algebraic & Geometric Topology.
[24] Michael Lesnick,et al. The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..
[25] Justin Curry,et al. The fiber of the persistence map for functions on the interval , 2017, Journal of Applied and Computational Topology.
[26] Steve Oudot,et al. Intrinsic Topological Transforms via the Distance Kernel Embedding , 2020, Symposium on Computational Geometry.