Size-Change Termination and Satisfiability for Linear-Time Temporal Logics

In the automata-theoretic framework, finite-state automata are used as a machine model to capture the operational content of temporal logics. Decision problems like satisfiability, subsumption, equivalence, etc. then translate into questions on automata like emptiness, inclusion, language equivalence, etc. Linear-time temporal logics like LTL, PSL and the linear-time µ-calculus have relatively simple translations into alternating parity automata, and this automaton model is closed under all Boolean operations with very simple constructions. Thus, the typical decision problems for such linear-time temporal logics reduce relatively simply to the emptiness problem for alternating parity automata. In this paper we present a method for decision this emptiness problem without going through intermediate automaton models like nondeterministic ones. The method is a direct adaptation of the size-change termination principle which was orgininally used to decide termination of abstract functional programs.

[1]  Kim G. Larsen,et al.  On Modal Refinement and Consistency , 2007, CONCUR.

[2]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[3]  Jan van Leeuwen,et al.  Computer Science Today , 1995, Lecture Notes in Computer Science.

[4]  Amir Pnueli,et al.  Temporal Logic in Specification , 1987, Lecture Notes in Computer Science.

[5]  Colin Stirling,et al.  Comparing Linear and Branching Time Temporal Logics , 1987, Temporal Logic in Specification.

[6]  Takayasu Ito,et al.  Theoretical Computer Science: Exploring New Frontiers of Theoretical Informatics , 2001, Lecture Notes in Computer Science.

[7]  J. Havlicek,et al.  Automata Construction for PSL , 2005 .

[8]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[9]  Martin Lange Linear Time Logics Around PSL: Complexity, Expressiveness, and a Little Bit of Succinctness , 2007, CONCUR.

[10]  Wolfgang Thomas,et al.  Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics , 1990 .

[11]  Neil D. Jones,et al.  The size-change principle for program termination , 2001, POPL '01.

[12]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[13]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[14]  Moshe Y. Vardi An Automata-Theoretic Approach to Linear Temporal Logic , 1996, Banff Higher Order Workshop.

[15]  Orna Kupferman,et al.  Extended Temporal Logic Revisited , 2001, CONCUR.

[16]  Howard Barringer,et al.  Temporal Logic with Fixed Points , 1987, Temporal Logic in Specification.

[17]  Moshe Y. Vardi Linear vs. branching time: a complexity-theoretic perspective , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[18]  Naveen Garg,et al.  FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science, 26th International Conference, Kolkata, India, December 13-15, 2006, Proceedings , 2006, FSTTCS.

[19]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[20]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[21]  Martin Hofmann,et al.  A Proof System for the Linear Time µ-Calculus , 2006, FSTTCS.

[22]  Joe Hurd,et al.  Executing the Formal Semantics of the Accellera Property Specification Language by Mechanised Theorem Proving , 2003, CHARME.

[23]  Parosh Aziz Abdulla,et al.  Simulation Subsumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing , 2010, CAV.

[24]  Faron Moller,et al.  Logics for Concurrency , 1996, Lecture Notes in Computer Science.

[25]  Moshe Y. Vardi Branching vs. Linear Time: Final Showdown , 2001, TACAS.

[26]  Moshe Y. Vardi Alternating Automata and Program Verification , 1995, Computer Science Today.

[27]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[28]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[29]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[30]  R. Milner,et al.  Bigraphical Reactive Systems , 2001, CONCUR.

[31]  Christian Dax,et al.  Alternation Elimination by Complementation (Extended Abstract) , 2008, LPAR.

[32]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[33]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[34]  Moshe Y. Vardi,et al.  Büchi Complementation and Size-Change Termination , 2009, TACAS.

[35]  Christof Löding,et al.  Alternating Automata and Logics over Infinite Words , 2000, IFIP TCS.

[36]  Moshe Y. Vardi,et al.  Efficient Büchi Universality Checking , 2010, TACAS.

[37]  R. Kaivola Using automata to characterise fixed point temporal logics , 1996 .