An LMI Technique for the Global Stabilization of Nonlinear Polynomial Systems

This paper deals with the global asymptotic stabilization of nonlinear polynomial systems within the framework of Linear Matrix Inequalities (LMIs). By employing the well-known Lyapunov stability direct method and the Kronecker product properties, we develop a technique of designing a state feedback control law which stabilizes quadratically the studied systems. Our main goal is to derive sufficient LMI stabilization conditions which resolution yields a stabilizing control law of polynomial systems.

[1]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[2]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[3]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[4]  P. Borne,et al.  Stability, stabilization, regulation using vector norms , 1996 .

[5]  P. Khargonekar,et al.  Robust stabilization of linear systems with norm-bounded time-varying uncertainty , 1988 .

[6]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[7]  F. Rotella,et al.  Design of observers for nonlinear time variant systems , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[8]  Naceur Benhadj Braiek,et al.  On the stability analysis of nonlinear systems using polynomial Lyapunov functions , 2008, Math. Comput. Simul..

[9]  E. Benhadj Braiek On the global stability of nonlinear polynomial systems , 1996 .

[10]  Vojtech Veselý,et al.  Robust PID Decentralized Controller Design Using LMI , 2007, Int. J. Comput. Commun. Control.

[11]  E. B. Braiek Feedback stabilization and stability domain estimation of nonlinear systems , 1995 .

[12]  G. Dauphin-Tanguy,et al.  Non-linear systems: identification and optimal control , 1988 .

[13]  John C. Doyle A Review of μ for Case Studies in Robust Control , 1987 .

[14]  E. Benhadj Braiek,et al.  Robust control of nonlinear polynomial systems , 2002 .

[15]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[16]  H. Bouzaouache,et al.  On guaranteed global exponential stability of polynomial singularly perturbed control systems , 2006, The Proceedings of the Multiconference on "Computational Engineering in Systems Applications".

[17]  P. Borne,et al.  Non quadratic stability of nonlinear systems in the Takagi-Sugeno form , 2001, 2001 European Control Conference (ECC).

[18]  Arkadi Nemirovski,et al.  The projective method for solving linear matrix inequalities , 1997, Math. Program..

[19]  F. Lescher,et al.  Switching LPV Controllers for a Variable Speed Pitch Regulated Wind Turbine , 2006, The Proceedings of the Multiconference on "Computational Engineering in Systems Applications".

[20]  P. Gahinet,et al.  The projective method for solving linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[21]  F. Rotella,et al.  State observer design for analytical non-linear systems , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[22]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[23]  Frédéric Rotella,et al.  Algebraic criteria for global stability analysis of non-linear systems , 1995 .