New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity

Abstract.A variety of new complex waves representing solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity is investigated. Two different approaches are used, namely the generalized exponential function and the unified methods. Complex periodic, solitary, soliton, and elliptic wave solutions of phenomena that occur in nonlinear optics or in plasma physics are obtained. The physical meaning of the geometrical structures for some solutions is discussed for different choices of the free parameters. It is shown that the proposed methods lead to powerful mathematical tools for obtaining the exact traveling wave solutions of complex nonlinear evolution equations.

[1]  M. Eslami,et al.  The unified method for conformable time fractional Schro¨dinger equation with perturbation terms , 2018, Chinese Journal of Physics.

[2]  M. S. Osman,et al.  On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide , 2017, Comput. Math. Appl..

[3]  Hadi Rezazadeh,et al.  New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity , 2018, Optik.

[4]  A. Bekir New exact travelling wave solutions of some complex nonlinear equations , 2009 .

[5]  T. Kofané,et al.  Pattern selection and modulational instability in the one-dimensional modified complex Ginzburg–Landau equation , 2005 .

[6]  Fiza Batool,et al.  On the solitary wave dynamics of complex Ginzburg–Landau equation with cubic nonlinearity , 2017 .

[7]  Mostafa Eslami,et al.  Topological 1-soliton solution of nonlinear Schrödinger equation with dual-power law nonlinearity in nonlinear optical fibers , 2013 .

[8]  M. Osman,et al.  Exact solutions of the Korteweg-de Vries equation with space and time dependent coefficients by the extended unified method , 2014, Indian Journal of Pure and Applied Mathematics.

[9]  M. Osman Analytical study of rational and double-soliton rational solutions governed by the KdV–Sawada–Kotera–Ramani equation with variable coefficients , 2017 .

[10]  Yusuf Gurefe,et al.  Extended trial equation method to generalized nonlinear partial differential equations , 2013, Appl. Math. Comput..

[11]  M. Belić,et al.  Optical soliton perturbation with Fokas–Lenells equation using three exotic and efficient integration schemes , 2018, Optik.

[12]  M. Eslami Trial solution technique to chiral nonlinear Schrodinger’s equation in (1$$+$$+2)-dimensions , 2016 .

[13]  H. M. Baskonus,et al.  Complex acoustic gravity wave behaviors to some mathematical models arising in fluid dynamics and nonlinear dispersive media , 2017 .

[14]  Dumitru Baleanu,et al.  On nonautonomous complex wave solutions described by the coupled Schrödinger–Boussinesq equation with variable-coefficients , 2018 .

[15]  K. U. Tariq,et al.  Optical solitons with quadratic–cubic nonlinearity and fractional temporal evolution , 2018, Modern Physics Letters B.

[16]  A. Bekir,et al.  Tanh-type and sech-type solitons for some space-time fractional PDE models , 2017 .

[17]  M. S. Osman,et al.  Dynamic of DNA's possible impact on its damage , 2016 .

[18]  J. Machado,et al.  The dynamical behavior of mixed-type soliton solutions described by (2+1)-dimensional Bogoyavlensky–Konopelchenko equation with variable coefficients , 2018 .

[19]  M. Eslami,et al.  Exact multisoliton solutions of nonlinear Klein-Gordon equation in 1 + 2 dimensions , 2013 .

[20]  Dmitry I. Sinelshchikov,et al.  Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations , 2011, Appl. Math. Comput..

[21]  Adem C. Cevikel,et al.  A variety of exact solutions for the time fractional Cahn-Allen equation , 2015 .

[22]  M. S. Osman,et al.  On complex wave solutions governed by the 2D Ginzburg–Landau equation with variable coefficients , 2018 .

[23]  M. Osman,et al.  On the Variational Approach for Analyzing the Stability of Solutions of Evolution Equations , 2013 .

[24]  F. S. Khodadad,et al.  Soliton solutions of the conformable fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity , 2017 .

[25]  Hadi Rezazadeh,et al.  Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation , 2017 .

[26]  Li-Hua Zhang,et al.  Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms , 2009, Appl. Math. Comput..

[27]  M. Eslami,et al.  New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation , 2018, Optik.

[28]  Nasir Taghizadeh,et al.  The first-integral method applied to the Eckhaus equation , 2012, Appl. Math. Lett..

[29]  M. Eslami,et al.  Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities , 2016 .

[30]  Wenjun Liu,et al.  Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers , 2017 .

[31]  M. Belić,et al.  Optical solitons having weak non-local nonlinearity by two integration schemes , 2018, Optik.

[32]  B. R. Wong,et al.  Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic–cubic nonlinearity , 2018, Optik.

[33]  Abdul-Majid Wazwaz,et al.  Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium , 2018, Comput. Math. Appl..

[34]  M. Kaplan,et al.  A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics , 2016 .

[35]  M. Osman Multiwave solutions of time-fractional (2 + 1)-dimensional Nizhnik–Novikov–Veselov equations , 2017 .

[36]  J. Manafian,et al.  Abundant soliton solutions of the resonant nonlinear Schrödinger equation with time-dependent coefficients by ITEM and He’s semi-inverse method , 2017 .

[37]  M. S. Osman,et al.  Multi-soliton rational solutions for some nonlinear evolution equations , 2016 .

[38]  Anjan Biswas,et al.  TEMPORAL 1-SOLITON SOLUTION OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH POWER LAW NONLINEARITY , 2009 .

[39]  Abdul-Majid Wazwaz,et al.  An efficient algorithm to construct multi-soliton rational solutions of the (2+ 1)-dimensional KdV equation with variable coefficients , 2018, Appl. Math. Comput..

[40]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[41]  G. Akram,et al.  Analytical solution of the Korteweg–de Vries equation and microtubule equation using the first integral method , 2018 .

[42]  Mohammed O. Al-Amr,et al.  Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution , 2018, Optik.

[43]  M. Eslami,et al.  Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities , 2018, Optik.

[44]  A. Bekir,et al.  Periodic and Solitary Wave Solutions of Complex Nonlinear Evolution Equations by Using First Integral Method , 2013 .

[45]  M. Mirzazadeh Topological and non-topological soliton solutions to some time-fractional differential equations , 2014, Pramana.

[46]  S. Mohyud-Din,et al.  A new modification in the exponential rational function method for nonlinear fractional differential equations , 2018 .

[47]  Liu Cheng-Shi,et al.  A New Trial Equation Method and Its Applications , 2006 .

[48]  J. Manafian,et al.  Exact solutions for Fitzhugh–Nagumo model of nerve excitation via Kudryashov method , 2017 .

[49]  M. Kaplan,et al.  Exponential rational function method for space–time fractional differential equations , 2016 .