The Boussinesq equation revisited

The continuous spectrum and soliton solutions for the Boussinesq equation are investigated using the ∂-dressing method. Solitons demonstrate quite extraordinary behavior; they may decay or form a singularity in a finite time. Formation of singularity (collapse of solitons) for the Boussinesq equation was discovered several years ago. Systematic study of the solitonic sector is presented.

[1]  L. V. Bogdanov,et al.  The non-local delta problem and (2+1)-dimensional soliton equations , 1988 .

[2]  S. Manakov,et al.  Construction of higher-dimensional nonlinear integrable systems and of their solutions , 1985 .

[3]  L. V. Bogdanov,et al.  Integrable (1+1)-dimensional systems and the Riemann problem with a shift , 1994 .

[4]  Carlos Tomei,et al.  Inverse scattering and the boussinesq equation , 1982 .

[5]  V. Zakharov On the Dressing Method , 1990 .

[6]  Athanassios S. Fokas,et al.  On the Inverse Scattering Transform for the Kadomtsev-Petviashvili Equation , 1983 .

[7]  S. Turitsyn,et al.  Destruction of stationary solutions and collapse in the nonlinear string equation , 1983 .

[8]  P. Caudrey The inverse problem for a general N × N spectral equation , 1982 .

[9]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[10]  S. Manakov,et al.  The inverse scattering transform for the time-dependent Schrodinger equation and Kadomtsev-Petviashvili equation , 1981 .

[11]  Vladimir E. Zakharov,et al.  On stochastization of one-dimensional chains of nonlinear oscillators , 1974 .

[12]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[13]  Vladimir E. Zakharov,et al.  Multidimensional nonlinear integrable systems and methods for constructing their solutions , 1985 .