Cyto-, Myelo-, and Receptor Architectonics of the Human Parietal Cortex

Various cyto- and myeloarchitectonic maps of the human parietal cortex have been published since the beginning of the past century. However, the parietal lobe remains an uncharted region, since these anatomical findings fail to explain the much greater areal differentiation, especially in the posterior parietal cortex, which has recently been revealed by functional imaging studies. This lack of congruence does not imply a total lack of correspondence between anatomical and functional data, since several practically forgotten architectonic studies published during the first 5 decades of the past century demonstrate a much more differentiated map of the parietal cortex than the popular map of Brodmann and others. Moreover, recent receptor-architectonic studies also demonstrate a detailed architectonic pattern the functional aspects of which will be explored in the near future.

[1]  Smith Ge,et al.  A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907 .

[2]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[3]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[4]  K. Lashley,et al.  The cytoarchitecture of the cerebral cortex of ateles: A critical examination of architectonic studies , 1946, The Journal of comparative neurology.

[5]  Warren S. McCulloch,et al.  The isocortex of the chimpanzee. , 1950 .

[6]  G. Bonin,et al.  The isocortex of man , 1951 .

[7]  R. Porter,et al.  What is area 3a? , 1980, Brain Research Reviews.

[8]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[9]  A. Galaburda,et al.  Inferior parietal lobule. Divergent architectonic asymmetries in the human brain. , 1984, Archives of neurology.

[10]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[11]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[12]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[13]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[14]  Howard F. Solomon,et al.  Autoradiography and correlative imaging , 1995 .

[15]  C. Colby,et al.  Spatial representations for action in parietal cortex. , 1996, Brain research. Cognitive brain research.

[16]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[17]  K Zilles,et al.  Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. , 1996, Advances in neurology.

[18]  Karl Zilles,et al.  The Developing European Computerized Human Brain Database for All Imaging Modalities , 1996, NeuroImage.

[19]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[20]  A. Schleicher,et al.  The Somatosensory Cortex of Human: Cytoarchitecture and Regional Distributions of Receptor-Binding Sites , 1997, NeuroImage.

[21]  A. Schleicher,et al.  Cytoarchitectural maps of the human brain in standard anatomical space , 1997, Human brain mapping.

[22]  Patrizia Fattori,et al.  The Posterior Parietal Cortex in Humans and Monkeys , 1997 .

[23]  K. Zilles,et al.  Structural divisions and functional fields in the human cerebral cortex 1 Published on the World Wide Web on 20 February 1998. 1 , 1998, Brain Research Reviews.

[24]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[25]  N Palomero-Gallagher,et al.  Receptor autoradiographic mapping of the mesial motor and premotor cortex of the macaque monkey , 1998, The Journal of comparative neurology.

[26]  K. Zilles,et al.  Illusory Arm Movements Activate Cortical Motor Areas: A Positron Emission Tomography Study , 1999, The Journal of Neuroscience.

[27]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[28]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[29]  B. Gulyás,et al.  Neuronal correlates of real and illusory contour perception: functional anatomy with PET , 1999, The European journal of neuroscience.

[30]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[31]  K. Zilles,et al.  t Object Shape Differences Reflected by Somatosensory Cortical Activation , 2000, The Journal of Neuroscience.

[32]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[33]  F Bremmer,et al.  Stages of self-motion processing in primate posterior parietal cortex. , 2000, International review of neurobiology.

[34]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[35]  K. Zilles,et al.  Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI , 2000, Neurology.

[36]  K. Zilles,et al.  Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. , 2000, Brain : a journal of neurology.

[37]  O. Andreassen,et al.  Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine , 2000, The Journal of Neuroscience.

[38]  Gereon R Fink,et al.  ‘Where’ depends on ‘what’: A differential functional anatomy for position discrimination in one- versus two-dimensions , 2000, Neuropsychologia.

[39]  M Honda,et al.  Essential role of the right superior parietal cortex in Japanese kana mirror reading: An fMRI study. , 2000, Brain : a journal of neurology.

[40]  H. Forssberg,et al.  Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study , 2000, The European journal of neuroscience.

[41]  K. Zilles,et al.  Fast reaction to different sensory modalities activates common fields in the motor areas, but the anterior cingulate cortex is involved in the speed of reaction. , 2000, Journal of neurophysiology.

[42]  P E Roland,et al.  Somatosensory areas in man activated by moving stimuli: cytoarchitectonic mapping and PET , 2000, Neuroreport.

[43]  C. Cavada,et al.  The Visual Parietal Areas in the Macaque Monkey: Current Structural Knowledge and Ignorance , 2001, NeuroImage.

[44]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[45]  Gereon R. Fink,et al.  Deriving Numerosity and Shape from Identical Visual Displays , 2001, NeuroImage.

[46]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[47]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.