Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space.

Quantum computing experiments are moving into a new realm of increasing size and complexity, with the short-term goal of demonstrating an advantage over classical computers. Boson sampling is a promising platform for such a goal; however, the number of detected single photons is up to five so far, limiting these small-scale implementations to a proof-of-principle stage. Here, we develop solid-state sources of highly efficient, pure, and indistinguishable single photons and 3D integration of ultralow-loss optical circuits. We perform experiments with 20 pure single photons fed into a 60-mode interferometer. In the output, we detect up to 14 photons and sample over Hilbert spaces with a size up to 3.7×10^{14}, over 10 orders of magnitude larger than all previous experiments, which for the first time enters into a genuine sampling regime where it becomes impossible to exhaust all possible output combinations. The results are validated against distinguishable samplers and uniform samplers with a confidence level of 99.9%.

[1]  Timothy C. Ralph,et al.  Error tolerance of the boson-sampling model for linear optics quantum computing , 2011, 1111.2426.

[2]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[3]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[4]  Fabio Sciarrino,et al.  Witnessing Genuine Multiphoton Indistinguishability. , 2018, Physical review letters.

[5]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[6]  Xiao Jiang,et al.  Toward Scalable Boson Sampling with Photon Loss. , 2018, Physical review letters.

[7]  Scott Aaronson,et al.  Bosonsampling is far from uniform , 2013, Quantum Inf. Comput..

[8]  M. Lukin,et al.  Generation and manipulation of Schrödinger cat states in Rydberg atom arrays , 2019, Science.

[9]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[10]  B. Lanyon,et al.  Observation of entangled states of a fully-controlled 20 qubit system , 2017, 1711.11092.

[11]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[12]  Ming-Cheng Chen,et al.  Towards optimal single-photon sources from polarized microcavities , 2019, Nature Photonics.

[13]  Raphaël Clifford,et al.  Classical boson sampling algorithms with superior performance to near-term experiments , 2017, Nature Physics.

[14]  Yang Wang,et al.  Computing Permanents for Boson Sampling on Tianhe-2 Supercomputer , 2016, National Science Review.

[15]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[16]  W. Marsden I and J , 2012 .

[17]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[18]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[19]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[20]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[21]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[22]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[23]  Nathan Wiebe,et al.  Experimental statistical signature of many-body quantum interference , 2018 .

[24]  Yu He,et al.  Time-Bin-Encoded Boson Sampling with a Single-Photon Device. , 2016, Physical review letters.

[25]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[26]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[27]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[28]  V. Shchesnovich,et al.  Partial indistinguishability theory for multiphoton experiments in multiport devices , 2014, 1410.1506.

[29]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[30]  Andrew G. White,et al.  Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source. , 2016, Physical review letters.

[31]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[32]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[33]  J. O'Brien,et al.  On the experimental verification of quantum complexity in linear optics , 2013, Nature Photonics.

[34]  Andreas Buchleitner,et al.  Statistical benchmark for BosonSampling , 2014, 1410.8547.

[35]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[36]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[37]  Martin N. Rossor,et al.  Advanced online publication. , 2005, Nature structural biology.

[38]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[39]  Daniel J. Brod,et al.  Classical simulation of photonic linear optics with lost particles , 2018, New Journal of Physics.

[40]  Anthony Laing,et al.  Generation and sampling of quantum states of light in a silicon chip , 2018, Nature Physics.

[41]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[42]  W. Clements,et al.  Efficient Classical Algorithm for Boson Sampling with Partially Distinguishable Photons. , 2017, Physical review letters.

[43]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[44]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[45]  Jian-Wei Pan,et al.  12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. , 2018, Physical review letters.

[46]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[47]  Scott Aaronson,et al.  BosonSampling with Lost Photons , 2015, ArXiv.

[48]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[49]  Nathan Wiebe,et al.  Pattern recognition techniques for Boson Sampling validation , 2017, Physical Review X.

[50]  Jens Eisert,et al.  Sample Complexity of Device-Independently Certified "Quantum Supremacy". , 2018, Physical review letters.

[51]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[52]  Jian-Wei Pan,et al.  18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. , 2018, Physical review letters.

[53]  Jian-Wei Pan,et al.  On-demand semiconductor single-photon source with near-unity indistinguishability. , 2012, Nature nanotechnology.

[54]  Michael J. Bremner,et al.  Quantum sampling problems, BosonSampling and quantum supremacy , 2017, npj Quantum Information.

[55]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[56]  H. Fan,et al.  Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits , 2019, Science.

[57]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[58]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[59]  Fabio Sciarrino,et al.  Photonic implementation of boson sampling: a review , 2019, Advanced Photonics.

[60]  Yi Hu,et al.  Experimental Gaussian Boson sampling. , 2019, Science bulletin.

[61]  Andreas Buchleitner,et al.  Stringent and efficient assessment of boson-sampling devices. , 2013, Physical review letters.

[62]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[63]  Andrew G. White,et al.  Direct characterization of linear-optical networks. , 2012, Optics express.